
EFI Developer Kit (EDK)

Getting Started Guide

Version 0.41

January 14, 2005

ii January 2005 Version 0.41

Revision History

Revision Revision History Date

0.4 Had to start some where. 12/30/04

0.41 Minor edits; corrected referenced URL pg. 8 1/14/05

Information in this document is provided in connection with Intel. products. No license, express or implied, by estoppel or
otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions
of Sale for such products, Intel assumes no liability whatsoever, and INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life
saving, or life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without
notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined."
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them.

This document as well as the software described in it is furnished under license and may only be used or copied in
accordance with the terms of the license. The information in this manual is furnished for informational use only, is subject to
change without notice, and should not be construed as a commitment by Intel Corporation to update or revise the
information or document. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may
appear in this document or any software that may be provided in association with this document.

This document provides website addresses for certain third party websites. The referenced sites are not under the control of
Intel and Intel is not responsible for the content of any referenced site or any link contained in a referenced site. Intel does
not endorse companies or products for sites which it references. If you decide to access any of the third party sites
referenced in this document, you do this entirely at your own risk.

Intel, the Intel logo and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2005 Intel Corporation. All Rights Reserved.

Version 0.41 January 2005 iii

Contents

1 Introduction .. 5
1.1 Summary.. 5
1.2 Overview .. 5
1.3 EDK Build Tips ... 5

1.3.1 NT32 - Edk\Sample\Platform\Nt32\Build ... 5
1.3.2 IPF - Edk\Sample\Platform\IPF\Build .. 5

1.4 Glossary ... 6
1.5 Conventions Used in This Document... 7

1.5.1 Pseudo-Code Conventions.. 7
1.5.2 Typographic Conventions.. 7

2 Development System Setup.. 9
2.1 Install Tools .. 9

3 Quick Start Guide ... 11
3.1 Downloading Source Code .. 11

3.1.1 Downloading Using a Link ... 11
3.1.2 Downloading Using the Web Site .. 11

3.2 Running the Nt32 Emulation .. 12
3.2.1 Modify System.cmd to Match Your Configuration ... 13
3.2.2 The Easy Way to Build from the Command Shell ... 14

3.3 Using VC++ IDE... 14
3.3.1 Build.cmd Source .. 16

3.4 Debug Tips... 17

4 Building the EDK.. 19
4.1 Build Configuration Files .. 19
4.2 Environmental Variables .. 19

4.2.1 EDK Platform Builds .. 19
4.2.2 Microsoft Tools Environment Variables ... 19

4.3 Typical Build Flow .. 20
4.3.1 Build Overview... 20
4.3.2 Invoke nmake .. 20
4.3.3 Include PlatformTools.env ... 21
4.3.4 Build the “build_tools” Target... 21
4.3.5 Build the “makefiles” Target... 21
4.3.6 Build the “builds” Target .. 21
4.3.7 Build the “fds” Target ... 21
4.3.8 Custom Build Steps ... 22

4.4 Build Inputs and Outputs.. 22
4.5 Build Dependencies ... 23

4.5.1 Build Dependency Limitations ... 23
4.6 Common Build Issues .. 24

EFI Developer Kit (EDK) Getting Start Guide

iv January 2005 Version 0.41

5 Miscellaneous Operations... 25
5.1 Setting up the Console... 25
5.2 EFI Shell Drive Mapping .. 25
5.3 Cleaning a Build Tip ... 25
5.4 Adding a New Component to a Build Tip ... 25
5.5 Building a Driver for EBC ... 26
5.6 Specifying Destination Firmware Volumes for a Component....................................... 26

6 Directory Structure of the Release Package ... 27
6.1 Description of Directory Structure .. 27

6.1.1 \Foundation.. 27
6.1.2 \Sample ... 30
6.1.3 \Other... 32

6.2 Rules .. 33

Appendix A File Name Extensions .. 35

Figures
4-1. Build Process Inputs and Outputs.. 22

Tables
1-1. Definitions of Terms ... 6
4-1. Build Configuration Files .. 19
4-2. DSC Files Included by Platform DSC File.. 20
6-1. File Name Extensions .. 35

Version 0.41 January 2005 5

1
Introduction

1.1 Summary

This document provides detailed instructions for using the EFI Developer kit (hereafter referred to
as “EDK”).

It is intended to be a reference for those people just starting EDK development. However, it also
provides details on some of the more esoteric tasks relating to development and debug.

1.2 Overview

This document does not try to explain what the EDK is all about. That information is available at
www.TianoCore.org under TianoCore FAQ and in other material available at the Web site. Instead,
this document is about downloading the code, building it and running it.

1.3 EDK Build Tips

1.3.1 NT32 - Edk\Sample\Platform\Nt32\Build
The NT32 build tip is the Framework (Tiano) ported to a platform that is a Windows* application.
In essence the platform specific code abstracts Windows APIs. This is a powerful environment for
debugging and exploring the core parts of Tiano as you can walk through the code with a
source-level debugger. In this document we describe how to use Microsoft Visual Studio* to build
and debug the EDK.

1.3.2 IPF - Edk\Sample\Platform\IPF\Build
The IPF build tip exists to allow the common components to build compiled with a 64-bit compiler.
There is not currently enough platform code or any emulator code in the EDK project for an
Intel® Itanium® processor family build tip. This build tip is still useful since just compiling with a
64-bit compiler helps find non portable code. It also ensures that any assembly language
components have a corresponding Itanium build option. In addition, it helps ensure that non
portable extensions such as _asm {} are not used in common code.

We expect to add build tips for other processor architectures in the future.

http://www.tianocore.org/

EFI Developer Kit (EDK) Getting Start Guide

6 January 2005 Version 0.41

1.4 Glossary

The following table defines several terms that are used throughout this document.

Table 1-1. Definitions of Terms

Term Description

ASL ACPI Source Language.

BDS Boot Device Selection.

Build tip An EDK build target whose build results in one or more firmware volumes.

CIS Core Interface Specification.

Component An EDK group of source files that provide a particular firmware function, and are
typically located in the same subdirectory under the EDK_SOURCE directory
structure. A component’s INF file specifies the source files making up the
component, and multiple components are used to build the final firmware volume.

CSM Compatibility Support Module.

DDK Driver Development Kit.

DLL Dynamic-link library.

DSC Description file.

DXE Driver Execution Environment.

DXE CIS Intel® Platform Innovation EDK for EFI Driver Execution Environment Core
Interface Specification.

EBC EFI Byte Code.

EDK EFI Developer Kit.

EFI Extensible Firmware Interface.

EDK_SOURCE An environmental variable that specifies the base directory where the EFI source
files are located. Typically this directory will be C:\TianoCore\Edk.

FFS Firmware File System.

FV Firmware volume.

GUID Globally Unique Identifier.

HOB Hand-Off Block.

IA-32 32-bit Intel® architecture.

IPL Initial Program Load.

MASM Microsoft Macro Assembler.

PE Portable Executable.

PEI Pre-EFI Initialization.

PEI CIS Intel Platform Innovation EDK for EFI Pre-EFI Initialization Core Interface
Specification.

PEIM Pre-EFI Initialization Module.

PPI PEIM-to-PEIM Interface.

SEC Security.

SMM System Management Mode.

Introduction

Version 0.41 January 2005 7

1.5 Conventions Used in This Document

This document uses the typographic and illustrative conventions described below.

1.5.1 Pseudo-Code Conventions
Pseudo code is presented to describe algorithms in a more concise form. None of the algorithms in
this document are intended to be compiled directly. The code is presented at a level corresponding
to the surrounding text.

In describing variables, a list is an unordered collection of homogeneous objects. A queue is an
ordered list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be First In
First Out (FIFO).

Pseudo code is presented in a C-like format, using C conventions where appropriate. The coding
style, particularly the indentation style, is used for readability and does not necessarily comply with
an implementation of the Extensible Firmware Interface Specification or any of the architecture
specifications that are associated with the EDK.

1.5.2 Typographic Conventions
This document uses the typographic and illustrative conventions described below:

Plain text The normal text typeface is used for the vast majority of the descriptive
text in a specification.

Bold In text, a Bold typeface identifies a processor register name. In other
instances, a Bold typeface can be used as a running head within a
paragraph.

Italic In text, an Italic typeface can be used as emphasis to introduce a new
term or to indicate a manual or specification name.

BOLD Monospace Computer code, example code segments, and all prototype code
segments use a BOLD Monospace typeface with a dark red color.
These code listings normally appear in one or more separate paragraphs,
though words or segments can also be embedded in a normal text
paragraph.

Italic Monospace In code or in text, words in Italic Monospace indicate placeholder
names for variable information that must be supplied (i.e., arguments).

Plain Monospace In code, words in a Plain Monospace typeface that is a dark red
color but is not bold or italicized indicate pseudo code or example code.
These code segments typically occur in one or more separate paragraphs.

EFI Developer Kit (EDK) Getting Start Guide

8 January 2005 Version 0.41

See the Framework master glossary in the Framework Interoperability and Component
Specifications help system for definitions of terms and abbreviations that are used in this document
or that might be useful in understanding the descriptions presented in this document.

See the Framework master references in the Interoperability and Component Specifications help
system for a complete list of the additional documents and specifications that are required or
suggested for interpreting the information presented in this document.

The EDK Interoperability and Component Specifications help system is available at the following
URL:

http://www.intel.com/technology/EDK/spec.htm

http://www.intel.com/technology/framework/spec.htm

Version 0.41 January 2005 9

2
Development System Setup

This section describes the steps that are necessary to initially set up the local system in preparation
for building a platform (build tip) in the EDK source tree.

In general we tried to make the project as compiler neutral as possible. We would like to add
support for more compiler types and also support a Linux hosted development environment in the
future, but we need your help.

2.1 Install Tools

Several Microsoft tools are used to build the EDK source tree. The following tools must be
installed on the development system.
• Microsoft Windows 2000 or Microsoft Windows XP* operating system
• For 32-bit Intel architecture (IA-32) platform development:

⎯ Microsoft Visual Studio .NET* 2003 Enterprise (7.1)
• For Intel Itanium processor family development:

⎯ Microsoft Windows Server* 2003 Driver Development Kit (DDK), build 3790

The EDK supports an EDK_TOOLS_PATH that can be used to optionally point to the location of
the development tools. In most of this document we assume this tools path is not set. The
EDK_TOOLS_PATH is very useful if you have your development tools checked into your source
base. Since we are just getting started we will assume you just have the tools installed in the default
locations.

EFI Developer Kit (EDK) Getting Start Guide

10 January 2005 Version 0.41

Version 0.41 January 2005 11

3
Quick Start Guide

This quick start guide assumes you have a copy of Microsoft Visual Studio .NET 2003
Enterprise (7.1) installed on your system.

3.1 Downloading Source Code

The first step is to download the source code from www.TianoCore.org. At this time you need to
register and get a log in to have access the source. Don’t worry, everyone is welcome to join.

3.1.1 Downloading Using a Link
Directions for downloading source using a link:

1. Log on to www.TianoCore.org.
2. Once logged in, navigate to the following URL;

http://edk.tianocore.org/servlets/ProjectDocumentList?folderID=5&expandFolder=5&folderID
=0. You will be taken to the EDK Documents & files: Development Snapshot page.

3. Under Development Snapshots pick the one with the latest date and click on it. It’s a ZIP file so
it should automatically launch a decompress program (I used WinZip).

4. Extract the Zip file to a location on your system. For this example I extracted to C:\TianoCore.

3.1.2 Downloading Using the Web Site
Directions for downloading source using the Web site:

1. Click the Projects tab near the upper left corner of the page.
2. Click on edk in Name column of the Projects folder.
3. Under Projects >> edk, there is a Project tools box (upper left of the page). In this box, click on

Documents & files.
4. Under Documents & files >> edk, click on Releases. Two subdirectories should show up:

Development Snapshots and Official Releases.
5. Click Development Snapshots.
6. Under Development Snapshots, pick the one with the latest date and click on it. It’s a ZIP file

so it should automatically launch a decompress program (I used WinZip).
7. Extract the Zip file to a location on your system. For this example I extracted to C:\TianoCore.

For those of you who are more risk averse, you can try an official release from the URL:
http://edk.tianocore.org/servlets/ProjectDocumentList?folderID=6&expandFolder=6&folderID=5.

In this example we will assume the zip file of the source was extracted to C:\TianoCore. You can
choose any location you like.

http://www.tianocore.org/
http://www.tianocore.org/
http://edk.tianocore.org/servlets/ProjectDocumentList?folderID=5&expandFolder=5&folderID=0
http://edk.tianocore.org/servlets/ProjectDocumentList?folderID=5&expandFolder=5&folderID=0
http://edk.tianocore.org/servlets/ProjectDocumentList?folderID=6&expandFolder=6&folderID=5

EFI Developer Kit (EDK) Getting Start Guide

12 January 2005 Version 0.41

3.2 Running the Nt32 Emulation

The makefile for the Nt32 emulation build tip has a run target that can be used to run the Nt32
emulation. The Nt32 build tip is located at Edk\Sample\Platform\Nt32\Build. However, before
running the emulation, the following steps must be performed. Type in the commands in this
highlight, the rest of the text is just explanation.

1. Launch a “Visual Studio .Net 2003 Command Prompt”. The "Visual Studio .Net 2003
Command Prompt" can be launched from [Start]->[All Programs]->[Microsoft Visual Studio
.Net 2003]->[Visual Studio .Net Tools]->[Visual Studio .Net 2003 Command Prompt].

If you don’t have this option on your system you can do this manually by performing the
following steps.
a. Open Windows command line shell (cmd.exe) and perform the following operations.

Click [Start]->[Run] and type in cmd.exe. You can also usually find it under [Start]->[All
Programs]->[Accessories]->[Command Prompt].

b. Before you can build the EDK you need to make sure the VC++ compiler is in the path.

⎯ VC++ has a batch file called vcvars32.bat that you can execute

⎯ A lot of people just make sure the VC++ tools are in their path

o Right click on My Computer icon

o Select Properties

o Select the Advanced tab

o Click the Environment Variables button near the bottom of the tab

o Under System variables double click Path. You may have to scroll down to find
Path

o Edit “Variable value:” to include the path for VC++

C:\Program Files\Microsoft Visual Studio .NET 2003\Vc7\bin; is the value on my
system.

2. Set EDK_SOURCE=C:\TianoCore\Edk or where ever you extracted the zip.
EDK_SOURCE is used by the build infrastructure to know where the source tree is located.
Make sure you don’t put spaces around the =.

3. cd \TianoCore\Edk\Sample\Platform\Nt32\Build
4. Type nmake at the command line to build the source.
5. System.cmd runs a shell script to set environment variables to configure the environment

for the emulator. This allows you to add are removed emulated devices. This is optional as
defaults will be used if the system.cmd shell command is not executed.

6. nmake run. Execute the emulator. This command should result in a Boot Device Selection
(BDS) prompt to select the boot device. If no action is taken the boot prompt will time out and
launch the EFI Shell. No action should put you at the EFI Shell prompt. To exit the
simulation, enter reset. To exit the shell type exit and you will get back to the BDS
prompt.

You can type help at the EFI Shell prompt to get help on the EFI shell commands. For more info
see EFI Shell documentation [link TBD].

Quick Start Guide

Version 0.41 January 2005 13

3.2.1 Modify System.cmd to Match Your Configuration

 NOTE

This is an optional step. The build will use the default settings for these variables if this step is not
performed.

Here is a list of the Windows environment variables that can be used to configure the NT32
environment.

• EFI_WIN_NT_SERIAL1– Maps a physical serial port through Windows into the emulator.
Windows reserves the following names COM1, COM2, COM3, COM4, COM5, COM6,
COM7, COM8, and COM9 for the serial ports.

• EFI_WIN_NT_UGA1 – Creates a Windows window that emulates an EFI UGA device. Each
element represents the name of the window.

• EFI_WIN_NT_FILE_SYSTEM1 – Maps a Windows directory path into the emulator.
Multiple paths are supported. It’s possible to access the named directory and all it’s
subdirectories from the emulator.

• EFI_FIRMWARE_VOLUMES1 – Windows path for a Firmware Device. The default is the
output from the nmake command. Multiple Firmware Devices can be mapped into the
emulator.

• EFI_MEMORY_SIZE1 – List of decimal numbers that represents megabytes of memory in the
emulator. It’s not possible to specify the address of the memory as the emulator must do this
dynamically.

• EFI_WIN_NT_CONSOLE – Maps a Windows text based console into the emulator. This is
option has been made obsolete by EFI_WIN_NT_UGA.

• EFI_BOOT_MODE – Decimal representation for the Tiano boot mode.

• EFI_CPU_MODEL – String for the CPU model. Used in a UI.

• EFI_CPU_SPEED – String for the CPU speed. Used in a UI.

• EFI_WIN_NT_VIRTUAL_DISKS1 – Maps a file into the emulator as disk device.

⎯ <F | R><O | W>;<block count>;<block size>[!...]

o Fixed – Fixed disk, like a hard disk

o Removable – Removable disk like a floppy or CD-ROM

o Read Only – Write protected device

o Read Write – Read/Write device

o <block count> – decimal number of blocks a device supports

o <block size> – decimal number of bytes per block. Disks are usually 512 and a
CD-ROM 2048

EFI Developer Kit (EDK) Getting Start Guide

14 January 2005 Version 0.41

• EFI_WIN_NT_PHYSICAL_DISKS1 – Maps a physical device managed by Windows into the
emulator. You can directly map CD-ROMs, hard drives, floppies, and USB disks directly into
the emulator. Care should be taken with this option as you could damage you system if you are
not careful.

⎯ <drive letter>:<F | R><O | W>;<block count>;<block size>[!...]

You can look at the comments in the system.cmd file to see example and current settings for all the
variables.

3.2.2 The Easy Way to Build from the Command Shell
Lots of developers make cmd.exe an Icon on their desktop. It’s possible to make the icon run a shell
script before it opens, and it’s very convenient to have this shell script set up the environment
variables and paths you need to do an EDK build.

Go to the Command Prompt icon, right click, and select Properties. From the Properties windows
select the Shortcut tab. Under Target: in the short cut tab type “%SystemRoot%\system32\cmd.exe
/kc:\TianoCore\build.cmd c:\TianoCore\Edk NT32” (no quotes). It’s also a good idea to give the
icon on your desktop a descriptive name. Now when you click on the icon it opens a command
shell window and starts up a build. See section 3.3.1 for a listing on Build.cmd.

3.3 Using VC++ IDE

It’s very convenient to build the EDK from within Microsoft Visual Studio as you can double click
on build errors in the build window and the IDE will open the file with the cursor on the error.

The following section was tested on Microsoft Development Environment 2003 Version 7.1.3088.
It is also assumed that the EDK has been placed in C:\TianoCore\Edk. The following instructions
allow you to build the EDK NT32 build target from VC++ that is located at
C:\TianoCore\Edk\Sample\Platform\Nt32\Build.

The first step is to identify a place where VC++ can store its files. This can be anywhere, but we
recommend you don’t use the EDK source tree. For this example we will use C:\TianoCore\VC++.
The following steps assume a batch file called Build.cmd that is located at C:\TianoCore\
Build.cmd (see section 3.3.1 for the contents of the batch file):

1. Start Visual Studio.
2. If a solution is opened, select [File]->[Close Solution] to close the current solution.
3. Select [File]->[New]->[Project], which brings up the “New Project” dialog. In this dialog:

a. In the “Project Types:” pane, select the [Visual C++ Projects] folder
b. In the “Templates:” pane, select the [Makefile Project] icon
c. In the “Name:” text box, type NT32
d. In the “Location:” textbox, type C:\TianoCore\VC++
e. Click [OK]

1 These options support the ‘!’ as a separator. The ‘!’ allows multiple instances of a feature to be supported
 wth a single variable.

Quick Start Guide

Version 0.41 January 2005 15

4. The “Makefile Application Wizard – NT32” dialog then pops up. In this dialog:
a. Select [Application Settings]
b. For "Build command line:", enter c:\TianoCore\build.cmd

c:\TianoCore\Edk NT32
c. For “Output:”, enter

c:\TianoCore\Edk\Sample\Platform\Nt32\Build\Ia32\SecMain.exe.
Replace any existing entries.

d. For "Clean commands:", enter c:\TianoCore\build.cmd c:\TianoCore\Edk
NT32 clean

e. For "Rebuild command line:", enter c:\TianoCore\build.cmd
c:\TianoCore\Edk NT32

 NOTE

The “Output:” box will default to NT32.exe and this will not work. Theoretically you should be
able to type c:\TianoCore\build.cmd c:\TianoCore\Edk NT32 clean, but Visual
Studio requires that this entry be an executable image. If you know how to solve this problem
please let us know!

f. Click [Finish]

5. This should bring you back to the main Visual Studio interface. In the "Solution Explorer"
pane, right-click the [NT32] folder and select [Build]. This should cause the NT32 project to be
built. If something fails, view the contents of the [Output] tabbed page and correct the problem.
The most common problem is incorrect build commands. To diagnose, in the "Solution
Explorer" pane, right-click the [NT32] folder and select [Properties]. Select [Configuration
Properties] folder, then the [Nmake] folder and check the build command settings are correct.
Note that "NT32" is case-sensitive.

⎯ Depending on your current configuration build icons that may be located on the tool bar.
You can also build from the build menu.

⎯ A solution is just a set of projects associated together.
6. If a build fails, then you can double-click on the error message (or press F8 which sometimes

works) in the [Output] tabbed page to jump to the source line where the error occurred.
7. Before running the emulator, you will need to set the working directory or execution will fail.

⎯ On the Solution Explorer right click on NT32 and select Properties

⎯ In the NT32 Property Pages pop up go to Configuration Properties and select Debugging

⎯ Under Action click on Working Directory. Enter
C:\TianoCore\Edk\Sample\Platform\Nt32\Build\IA32

⎯ Select OK to exit and complete the changes.
8. Press F5 (or [Debug]->[Start]) to run the emulator.
9. The only way to support the system.cmd shell command using VC++ is to execute system.cmd

in a command prompt and then launch VC++ from that command prompt. devenv.exe will
launch VC++ IDE from a command prompt window.

EFI Developer Kit (EDK) Getting Start Guide

16 January 2005 Version 0.41

3.3.1 Build.cmd Source

REM @echo off
REM **
REM
REM File: Build.cmd
REM
REM Usage: Build.cmd [EDK directory] [Platform name]
REM
REM Abstract:
REM This batch file is used to initiate an EDK build from within Visual
REM Studio. To use it, create a Visual Studio makefile project, and
REM for the project build commands invoke this batch file with the
REM first argument being the path to the EDK source tree, and the
REM second argument the platform to build (typically "NT32").
REM
REM **

REM Only used for error messages from this file
SET THIS_FILE=c:\TianoCore\build.cmd

if .%2. == .. goto Usage
set EDK_SOURCE=%1

REM Call the batch file that the Visual Studio install created to set environmental
REM variables if required.

REM call "C:\Program Files\Microsoft Visual Studio .NET 2003\Common7\Tools\vsvars32.bat"

if %2 == NT32 goto Build_NT32

REM This error occurs when your Visual Studio project's build command is incorrect.
REM In Visual Studio, right-click the project folder (typically NT32) in the Solution
REM Explorer pane and then select [Properties], then [Configuration Properties],
REM then [NMake] to check your commands. The first argument to this command file
REM is the EDK directory, and the second is the platform to build (case sensitive).
REM
echo.
echo %THIS_FILE%(36) : error 0000 : %2 : platform not supported by this batch file
echo.
goto Usage

:Build_NT32
REM This changes to the right driver letter
%EDK_SOURCE:~0,2%
cd %EDK_SOURCE%\Sample\Platform\Nt32\build
nmake %3 %4 %5 %6
goto Done

:Usage
echo.
echo Usage: Build [EDK directory] [NT32 more...]
echo.
goto Done

:Done

REM *** END Build.cmd ***

Quick Start Guide

Version 0.41 January 2005 17

3.4 Debug Tips

There are a few tricks we would like to share with you to help you get started playing with the
EDK. Microsoft Visual Studio (VC++ IDE) is a very powerful tool for doing software development
and this document assumes you will learn how to use it from some other source.

• When the NT32 environment is running you can attach the debugger to the running process.
Select [Tools] and from the pull down menu select [Debug Processes…]. The Processes dialog
box will pop up. In the Available Processes window find the process called SecMain.exe (the
Title is commonly UGA Window 2”) and double click it. If you get a dialog box click O.K.

⎯ Note: There is more than one thread running so you may have go to [Debug]->[Widows]-
>[Threads]. The main thread of the emulator is running at priority Highest. The other
threads are for child threads of the emulation, for example each UGA window is supported
via a thread.

• Insert the macro EFI_BREAKPOINT (); in your code. If you do an nmake run when the
code hits the EFI_BREAKPOINT () macro it will launch the VC++ IDE and open the file
and be sitting right on the breakpoint. You can do standard source level debugging from this
point.

⎯ This is a really good way to watch your code run.
• Use the ASSERT (FALSE) macro. The argument to ASSERT is a Boolean expression and if

it evaluates to FALSE the ASSERT is triggered. ASSERT is very useful for finding the system
in a corrupted state or to catch some one doing something you know the code will not handle.
The ASSERT macro is only included in a debug build.

⎯ The Standard Error Window (commonly the EDK shell window where you typed nmake
run) will have a print out of filename, line number, and contents of the expression. The
following is an example.

o ASSERT c:\TianoCore\Edk\Foundation\Core\Dxe\Event\Event.c(247):
((BOOLEAN) 0 == 1)

o A breakpoint will also be triggered.

• Use the DEBUG () macro to print out information to Standard Error. The Debug macro
supports different error levels that can be set dynamically. Errors of type EFI_D_ERROR are
always displayed so this is a simple debug print for debug builds. The simple version is:

DEBUG ((EFI_D_ERROR, "String to print\n"));

• Getting rid of the annoying question every time you hit a break point or unhandled exception if
you code is native or not.

1. Go to the Solution Explorer and right click on the project name (NT32 in our example).

2. Under Configuration Properties select Debugging.

3. Under Debugging pain in the Debuggers section click on Debugger Type until it shows
Native Only.

4. Hit OK to exit.

EFI Developer Kit (EDK) Getting Start Guide

18 January 2005 Version 0.41

Version 0.41 January 2005 19

4
Building the EDK

This section describes the unique steps that are necessary to set up and build the EDK Nt32
platform. There are other platforms available, but their setup instructions are not described here; the
steps are expected to be similar, however.

4.1 Build Configuration Files

One important feature of the EDK source tree is that three configuration files primarily are used to
describe the local system for building the various build tips. Two of these files are located in the
$(EDK_SOURCE)\Sample directory, while one is in the build tip. Table 4-1 lists the
configuration files that can be used. How these files get used is described in a later section.

Table 4-1. Build Configuration Files

Type of Configuration File Description

PlatformTools.env Defines platform-specific requirements. It’s located in the
platform build directory.

$(EDK_SOURCE)\Sample\CommonTools.env Defines generic build options and common definitions.

$(EDK_SOURCE)\Sample\LocalTools.env This file is expected to be customized by each user. This file
defines the paths to the build tools for each build tip.

4.2 Environmental Variables

4.2.1 EDK Platform Builds
The only environmental variable that must be defined for building the various EDK build tips is
EDK_SOURCE. EDK_SOURCE must be defined to point to the base of the EDK source tree, (e.g.,
set EDK_SOURCE=C:\TianoCore\Edk).

If no EDK_TOOLS_PATH is set the compiler and other build tools are executed using the path
variable. The EDK_TOOLS_PATH is used if you have all the binary build tools in a single directory
path. Having the build tools grouped under a specific path is common practice if the build tools are
checked into source control.

4.2.2 Microsoft Tools Environment Variables
In order to build any of the EDK platform tips, there are specific environment variables that must
be set for Visual C++ to work properly. VSVARS32.BAT must be run for the C compiler to build
the selected tip properly. If the Visual C++ installation was not allowed to update environmental
variables, an EDK build may terminate because the C compiler is not in the path. If this scenario
occurs, then VSVARS32.BAT, which was created when Visual C++ was installed, must be
manually run to set up environmental variables for using Visual C++. This file is typically located

EFI Developer Kit (EDK) Getting Start Guide

20 January 2005 Version 0.41

in the \Program Files\Microsoft Visual Studio .NET 2003\Common7\Tools
directory.

See section 3.2 for an example of how to set a global path variable that includes the Visual C++
tools so you do not need to run VSVARS32.BAT.

4.3 Typical Build Flow

This section provides a brief flow of how a build progresses. Many EDK-specific build tools are
used when building a firmware volume. However, details of their functionality are beyond the
scope of this document. From a higher perspective, a build progresses as indicated in the following
subsections.

4.3.1 Build Overview
The build is primarily driven using the platform makefile and build description (DSC) file. For
example, in the Nt32 emulation build tip, these files would be the following:

• $(EDK_SOURCE)\Sample\Platform\Nt32\Build\Makefile

• $(EDK_SOURCE)\Sample\Platform\Nt32\Build\Nt32.dsc

The makefile will typically call another makefile to build the EDK build tools and then call the
ProcessDsc tool to process the platform DSC file. The platform DSC file will #include other
common DSC files, which are listed in Table 4-2.

Table 4-2. DSC Files Included by Platform DSC File

File Description

$(EDK_SOURCE)\Sample\Platform\Common.dsc A common file that contains the build description
pieces that are independent of platform or processor
architecture.

$(EDK_SOURCE)\Sample\Platform\CommonIa32.dsc Processor-specific build description files for IA-32
processors.

$(EDK_SOURCE)\Sample\Platform\CommonIpf.dsc Processor-specific build description files for the
Itanium processor family.

The following is the output of ProcessDsc:

• A makefile for each component and library that is being built
• An additional makefile.out that will call each of the component and library makefiles that

it created

4.3.2 Invoke nmake
To begin the build process, invoke the nmake utility, which by default parses the default makefile
makefile. This step is the only manual step that is required to complete a build.

Building the EDK

Version 0.41 January 2005 21

4.3.3 Include PlatformTools.env
The makefile first includes the platform’s PlatformTools.env file, which includes
$(EDK_SOURCE)\CommonTools.env. This CommonTools.env file in turn includes
$(EDK_SOURCE)\LocalTools.env. The functionality of these tools was described in
section 4.1. Once these tools have been parsed, the paths to the build tools and default build options
have been defined and can be used to compile and link the source files that make up the EDK
source tree. Control then returns to the main makefile.

4.3.4 Build the “build_tools” Target
The next target to be built by the makefile is build_tools. The source to these EDK-specific
tools is included with the EDK source tree and is located under the following directory:
$(EDK_SOURCE)\Sample\Tools

4.3.5 Build the “makefiles” Target
The makefiles target runs the ProcessDsc utility to parse the platform DSC file and generate
the following:

• An output build tree (where binaries are built)
• The numerous component makefiles
• Makefile.out that calls all the component makefiles

Via #include statements, the DSC file is a concatenation of the following:

• Common build descriptions
• Processor architecture common build descriptions (one of

$(EDK_SOURCE)\Platform\CommonIpf.dsc or
$(EDK_SOURCE)\Platform\CommonIa32.dsc)

• Platform-specific build descriptions

4.3.6 Build the “builds” Target
The ProcessDsc utility generates a makefile for each component that comprises the build tip. It
also creates another makefile called makefile.out, which calls each of these individual
component makefiles. The builds target in the main build tip’s makefile is expected to
recursively call nmake for this makefile, which builds the components.

4.3.7 Build the “fds” Target
Once the individual components have been built, the target fds can invoke makefile.out to
package the individual files into firmware device images. In the simplest case, this step would
complete the build process for a build tip.

EFI Developer Kit (EDK) Getting Start Guide

22 January 2005 Version 0.41

4.3.8 Custom Build Steps
It is often required to add custom build steps at different points in the build process. This addition is
acceptable and is typically accomplished via changes to the main build tip makefile. However,
whenever possible, custom build steps should be avoided.

4.4 Build Inputs and Outputs

The preceding sections described the flow of the build process chronologically. Figure 4-1 provides
a very high-level pictorial overview of the build process for the Nt32 emulation build tip.

Common
Tools.env ProcessDscLocal

Tools.env makefile

Component
INF files

Component
makefiles

makefile
.out

FV INF files

CommonIa32.dsc
Common.dsc

Nt32.dsc

Figure 4-1. Build Process Inputs and Outputs

Building the EDK

Version 0.41 January 2005 23

In essence, the makefile includes the two tool configuration files and then invokes the
ProcessDsc build utility. This utility then takes as input the build tip description file
Nt32.dsc, which specifies a list of component information files that are also parsed by the utility.
ProcessDsc then creates the following:

• A makefile for each component INF file
• A makefile.out that calls nmake for each component makefile

• One or more firmware volume INF files that are used by the GenFvImage utility to build the
desired firmware volume(s)

4.5 Build Dependencies

For the most part, the EDK build process makes use of incremental builds. As a result, if a build is
invoked immediately after a previous build completes, the second build performs minimal
compiling and linking. The MakeDeps utility is used to provide this functionality by creating
source dependency files that can be included by the component makefiles. MakeDeps scans source
files for included files and emits dependencies in a form that is compatible with makefiles. For
example, if source file foo.c includes foo1.h and foo1.h further includes foo2.h, then
MakeDeps would emit the following after processing foo.c:

foo.obj : foo.c
foo.obj : foo1.h
foo.obj : foo2.h

A separate dependency file should be generated for each source file.

4.5.1 Build Dependency Limitations
There are some limitations to the dependency support in the EDK build process. EDK developers
need to be aware of these limitations to prevent debugging of build “problems” that may be
encountered. These limitations include the following:

• To reduce build times, the dependency include files are generated only the first time a build is
run on a build tip, or if the corresponding source file has changed. As a result, if foo1.h
above was modified to include foo3.h, the dependency would be inaccurate and foo.c
would not be recompiled if foo3.h changed.

• There are no dependencies on the build tools themselves. As a result, if a build tool is being
developed, the developer must be aware of the affected built files and manually delete them
such that they get rebuilt as the tool changes are made.

MakeDeps will typically be set up to ignore when include files are not found. As a result, if a
broken built tip is checked out and built, MakeDeps may generate incomplete include dependency
files if the paths to include files are insufficient to locate all the #include files.

EFI Developer Kit (EDK) Getting Start Guide

24 January 2005 Version 0.41

4.6 Common Build Issues

Some of the most common build issues with package file generation include the following:

• A build stops with an error message similar to the following:
“NMAKE : fatal error U1073: don’t know how to make
‘C:\efi_path\build_path\MyNewLibrary.lib’”

This error is usually caused by the component INF for MyNewLibrary not being added to the
list of [libraries] in the DSC file. This omission causes the link to fail for components
that call out the library in their INF files.

• ProcessDsc fails to find [package.xxx.yyy] for a component. For this error, do the
following:

⎯ Make sure that section [package.xxx.yyy] exists in the platform-specific generated
DSC file.

⎯ Examine the component INF file to ensure that COMPONENT_TYPE=xxx.

⎯ Examine the platform DSC file for the component in question to ensure that
PACKAGE=yyy for that component.

PACKAGE definitions on the component line take precedence over global PACKAGE
definitions. If there is a problem in the generated DSC file, it can be traced to the originating
DSC file by parsing backwards until a file header (containing the copyright and file name) is
found.

• A build will not run. This error is typically caused by using a default package file for a
component that requires a special package file. Typical components that require special
package file formats include the following:

⎯ PeiCore

⎯ DxeMain

⎯ A priori lists

⎯ ACPI tables
• GenFfsFile results in a build error. This error typically occurs because

PACKAGE_FILENAME was not passed through to the component makefile via the
[makefile.common] section in the platform DSC file. If this scenario is not the cause, then
verify that a backward slash “\” appears before the opening bracket “[.]” line in the package
section for the component. Otherwise the package file will simply contain “PACKAGE.INF”
because ProcessDsc will think the “[.]” is the start of a new section in the file.

Version 0.41 January 2005 25

5
Miscellaneous Operations

This section describes how to do various other common operations that do not fit in any other
section or documents.

5.1 Setting up the Console

The Boot Maintenance Manager utility allows the user to specify the devices that are used for
console output, input, and error (console redirection). By default, the console output and input are
connected to the emulated UGA windows. Error output is sent to the shell command window. The
utility allows other COM ports and/or PCI devices (video cards, USB and PS/2*) to be selected for
output, input, and error. Multiple devices may be selected for console redirection. To invoke the
utility, press the space bar when the system is first powered on and displays a start-up progress bar.
The EDK’s FrontPage user interface is displayed. Select the utility from the menu that is displayed.

5.2 EFI Shell Drive Mapping

The EFI Shell supports fixed file system mapping. The mapping order will never change as long as
the configuration of the storage devices is unchanged (no storage devices are added or removed and
no storage devices in the system are changed or reconfigured). If a change occurs, the file system
mapping may change.

The file system mapping may be discontinuous because some mappings may be reserved for the
removable storage devices or unrecognized file systems.

5.3 Cleaning a Build Tip

The makefiles for all the major build tips include a clean target that completely removes the
binaries from previous builds. So, to completely remove all built binaries, simply enter nmake
clean from the build tip directory.

5.4 Adding a New Component to a Build Tip

One of the most common developer operations is to add a component to a build tip. Adding a
component can be accomplished by performing the following steps:

1. Create a component INF file in the source directory for the component. Typically a similar
component’s INF file will be copied and modified.

2. Add the component to the list of components in the build tip’s DSC file. For example, if the
DiskIo component is to be added to the Nt32 build tip, then you must edit the Nt32.dsc
file, find the [components] section, and add the INF file name to the list of components.

3. Execute a build to build the component.

The resultant firmware file will then go into the default firmware volume in the final image.

EFI Developer Kit (EDK) Getting Start Guide

26 January 2005 Version 0.41

5.5 Building a Driver for EBC

To build a driver as an EBC image, the component should first be added as a standard component
described earlier. Then the component line can be modified to specify the target processor as EBC.
For example, to build the DiskIo driver as an EBC driver, modify the DSC component line for it
to be something like the following:
Universal\Disk\DiskIo\Dxe\DiskIo.inf PROCESSOR=EBC

This example assumes the following:

• The EBC compiler has been installed in the default location.
• EBC versions of the libraries have been added to the [libraries] section of the DSC file.

If the build fails, the LocalTools.env file may need to be modified to specify the path to the
EBC compiler and linker.

5.6 Specifying Destination Firmware Volumes for a Component

The build process will put each component in the [components] section of the DSC file in the
firmware volume or firmware volumes specified by variable $(FV). For example, assume the
platform DSC file has the firmware volume defined as shown (no spaces on either side of the
comma):
[components]
DEFINE FV=fv0001,fv0002

For this example, all the components following this definition will be put in both fv0001.fv and
fv0002.fv. However, a component line can specify a different value of FV, for example:

Universal\Disk\DiskIo\Dxe\DiskIo.inf FV=fv0001

For this case, the DiskIo component will be included only in fv0001.fv. Because this
definition is a local definition (which only applies to the current component) of the firmware
volume, any components that follow it in the DSC file will revert back to the default firmware
volume value.

Version 0.41 January 2005 27

6
Directory Structure of the Release Package

6.1 Description of Directory Structure

The top-level directory structure for the EDK release package is shown below and described in
further sections. The root directory of the package contains directories for foundational code,
sample implementation, and other add-on drivers, tools and applications.
EDK\
 Foundation\
 Sample\
 Other\

6.1.1 \Foundation
This directory contains the foundational source code, including PEI and DXE core, libraries,
essential definitions for both EFI and Intel Platform Innovation Framework for EFI, as well as
definitions of protocols, GUIDs, and PPIs. This directory contains 9 subdirectories, which are
shown below and described in further sections.
EDK\
 Foundation\
 Core\
 Cpu\
 Efi\
 Framework\
 Guid\
 Include\
 Library\
 Ppi\
 Protocol\

6.1.1.1 \Foundation\Core
This directory contains the source code for PEI core and the DXE core.
EDK\
 Foundation\
 Core\
 Dxe\
 Pei\

EFI Developer Kit (EDK) Getting Start Guide

28 January 2005 Version 0.41

6.1.1.2 \Foundation\Cpu
This directory contains a library for frequently used CPU instructions of IA32 architecture, such as
HLT, WBINVD, CPUID, and etc. The library provides a standard procedure interface for these
instructions, so that they can be invoked as encapsulated functions.
EDK\
 Foundation\
 Cpu\
 Pentium\

6.1.1.3 \Foundation\Efi
This directory contains definitions for protocols, GUIDs, and other items that are defined in the
Extensive Firmware Interface Specification, which can be found at
http://developer.intel.com/technology/efi/. A Protocol/GUID component usually contains a source
.h file that defines the Protocol/GUID, and a source .c file that defines a global variable for the
Protocol/GUID. No PPI definition occurs here since the EFI specification does not define any PPIs.
EDK\
 Foundation\
 Efi\
 Guid\
 Include\
 Protocol\

6.1.1.4 \Foundation\Framework
This directory contains definitions for protocols, GUIDs, PPIs and other items that are defined in
the specifications of Intel Platform Innovation Framework for EFI. These specifications can be
found at http://developer.intel.com/technology/framework/. Each Protocol/GUID/PPI component
usually contains a source .h file that defines the Protocol/GUID/PPI, and a source .c file that defines
a global variable for the Protocol/GUID/PPI.
EDK\
 Foundation\
 Framework\
 Guid\
 Include\
 Ppi\
 Protocol\

6.1.1.5 \Foundation\Guid
This directory contains foundational GUIDs that are not defined in EFI or Framework
specifications. Each GUID component usually contains a source .h file that defines the GUID, and a
source .c file that defines a global variable for the GUID. Files for each GUID component usually
constitute a separate subdirectory.

Files for each GUID usually constitute a separate subdirectory. The subdirectory structure is
omitted here.

http://developer.intel.com/technology/efi/
http://developer.intel.com/technology/framework/

Directory Structure of the Release Package

Version 0.41 January 2005 29

6.1.1.6 \Foundation\Include
This directory contains header files for generic definitions, including common macros, type
definitions for various architectures, and definitions for industry standards. The subdirectory
structure is shown below.
EDK\
 Foundation\
 Include\
 Ebc\
 Ia32\
 IndustryStandard\
 Ipf\
 Pei\

6.1.1.7 \Foundation\Library
This directory contains header files and source files for functions that are commonly used,
including the PEI library for the PEI phase, the DXE library for the DXE phase, the Runtime-DXE
library for both the runtime phase and the DXE phase, and the common library for various phases.
The subdirectory structure is shown below.
EDK\
 Foundation\
 Library\
 Dxe\
 EfiCommonLib\
 Pei\
 RuntimeDxe\

6.1.1.8 \Foundation\Ppi
This directory contains foundational PPIs that are not defined in the Framework specification. (No
PPIs are defined in EFI specification, as discussed above). Each PPI component usually contains a
source .h file that defines the PPI, and a source .c file that defines a global variable for the PPI.

Files for each PPI usually constitute a separate subdirectory. The subdirectory structure is omitted
here.

6.1.1.9 \Foundation\Protocol
This directory contains foundational protocols that are not defined in EFI or Framework
specifications. Each Protocol component usually contains a source .h file that defines the protocol,
and a source .c file that defines a global variable for the protocol.

Files for each protocol usually constitute a separate subdirectory. The subdirectory structure is
omitted here.

EFI Developer Kit (EDK) Getting Start Guide

30 January 2005 Version 0.41

6.1.2 \Sample
This directory contains sample implementations for a set of drivers, libraries, tools as well as
related definitions. The NT32 emulation platform is also included in this directory. This directory
contains 8 subdirectories, which are shown below and described in further sections.
EDK\
 Sample\
 Bus\
 Chipset\
 Cpu\
 Include\
 Library\
 Platform\
 Tools\
 Universal\

6.1.2.1 \Sample\Bus
This directory contains the sample bus driver implementation for industry standard buses, such as
PCI, SCSI, and USB. It also contains drivers for devices on these industry standard buses, such as
drivers for a USB keyboard, SCSI disk, and etc. In order to support the NT32 emulation platform, a
subdirectory named “WinNtThunk” is created to contain a set of simulated buses for the NT32
emulation tip.
EDK\
 Sample\
 Bus\
 Pci\
 Scsi\
 Usb\
 WinNtThunk\

6.1.2.2 \Sample\Chipset
This directory contains only one subdirectory named WinNtThunk, which contains software
emulated chipset drivers to support NT32 emulation platform.
EDK\
 Sample\
 Chipset\
 WinNtThunk\

Directory Structure of the Release Package

Version 0.41 January 2005 31

6.1.2.3 \Sample\Cpu
This directory contains the CPU related modules. The subdirectory “WinNtThunk” contains the
software emulated CPU driver to support the NT32 emulation platform. The subdirectory
“DebugSupport” includes some debug support facilities.
EDK\
 Sample\
 Cpu\
 DebugSupport\
 WinNtThunk\

6.1.2.4 \Sample\Include
This directory contains header files for sample implementations. The header files defines items
such as common macros, type definitions, and preprocessor directives controlling behavior of the
compiler. No subdirectory exists here.

6.1.2.5 \Sample\Library
This directory contains functions that are commonly used in sample implementations. The
subdirectory structure is shown below.
EDK\
 Sample\
 Library\
 Dxe\

6.1.2.6 \Sample\Platform
This directory contains PEIMs and DXE drivers, as well as other components for supporting
specific platforms. Modules that are generic enough to be used for multiple platforms are gathered
in a subdirectory named “Generic.” Other modules are grouped by their corresponding platform
names. For example, all the components (drivers, build configuration files, etc.) that are specific to
the NT32 platform reside in a subdirectory named “NT32”; all components that are specific to the
IPF reference tip reside in a subdirectory named “IPF”.
EDK\
 Sample\
 Platform\
 Generic\
 Nt32\
 IPF\

EFI Developer Kit (EDK) Getting Start Guide

32 January 2005 Version 0.41

6.1.2.7 \Sample\Tools
This directory contains source code and makefiles for the tools that are used to build EDK.
EDK\
 Sample\
 Tools\
 Source\

6.1.2.8 \Sample\Universal
This directory contains components that can be used on various platforms by simply recompiling
them. These components typically consume one set of interfaces to generate another set of
interfaces without touching hardware directly, thus ensuring their portability. The PEIMs use only
PEI services and PPIs, and the DXE drivers depend only upon EFI services and protocol interfaces
to interact with hardware.
EDK\
 Sample\
 Universal\
 Console\
 DataHub\
 Debugger\
 Disk\
 DxeIpl\
 Ebc\
 FirmwareVolume\
 GenericMemoryTest\
 MonotonicCounter\
 Network\
 Runtime\
 Security\
 UserInterface\
 Variable\
 WatchdogTimer\

6.1.3 \Other
This directory contains other add-on drivers, tools and applications. These components are
classified according to whether they are maintained or not. Those which are maintained reside in
the subdirectory “Maintained.” On the other hand, those which are no longer maintained would be
placed in subdirectory “NonMaintained.” Currently all add-on drivers, tools and applications in the
\Other directory are maintained, therefore the subdirectory “NonMaintained” does not exist.
EDK\
 Other\
 Maintained\

Directory Structure of the Release Package

Version 0.41 January 2005 33

6.1.3.1 \Other\Maintained
This directory contains add-on drivers, tools and applications that are maintained, including Shell
binaries, third-party tools, and etc. The subdirectory structure is shown below.
EDK\
 Other\
 Maintained\
 Application\
 Tools\

6.1.3.2 \Other\NonMaintained (not existing)
For the moment, all add-on drivers, tools and applications which should appear in the \Other
directory are maintained, therefore this directory does not exist. This directory will be created at
such time that a non-maintained component comes into the \Other directory.

6.2 Rules

The following rules apply when creating a directory structure for an EDK implementation:

1. Create processor-specific directories as a subdirectory to a component to contain processor
specific code for that component. The processor types that are currently supported are IA-32,
Itanium processor family, and EBC. They will use the following processor-specific directory
names:

• Ia32

• Ipf

• Ebc
2. A DXE driver must have one and only one “\Dxe\” name in its path.
3. A runtime DXE driver must have one and only one “\RuntimeDxe\” name in its path.
4. A PEIM must have one and only one “\Pei\” name in its path.
5. An SEC component must have one and only one “\Sec\” name in its path.
6. A tool component must have one and only one “\Tools\” name in its path.
7. A PPI definition must have one and only one “\Ppi\” name in its path.
8. A protocol definition must have one and only one “\Protocol\” name in its path.
9. A DXE Architectural Protocol definition must have one and only one “\ArchProtocol\”

name in its path.
10. A GUID definition must have one and only one “\Guid\” name in it path.
11. It is legal to have a “\Shared\” directory as a peer to one or more component directories.
12. No assembly files are allowed at the component level since assembly code is processor specific.
13. Both C and assembly files are allowed in a processor-type-specific subdirectory.
14. It is legal to have both \Dxe and \RuntimeDxe directories present at the same level.

EFI Developer Kit (EDK) Getting Start Guide

34 January 2005 Version 0.41

Version 0.41 January 2005 35

Appendix A
File Name Extensions

Table 6-1 below describes the different file name extensions that are used when building an EDK
implementation.

Table 6-1. File Name Extensions

File Extension Description

.APP An intermediate DXE application program file that is produced by the GenFfsFile
build tool from .PKG, .DPX, .SST, .PEI, and .PE32 files.

.ASM Assembly source code file.

.BIN A binary file that is produced by the Pe2Bin build tool from .EXE files and also
produced by other build tools.

.BIN1 An intermediate file that is produced by the SplitFile build tool from a .BIN file.
This file is not used.

.BIN2 An intermediate file that is produced by the SplitFile build tool from a .BIN file.

.C C source code file.

.COD A listing of the assembly code that is generated.

.COM An executable file that is produced by LINK using the /TINY switch.

.DEP Makefile dependency file that is generated by the MakeDeps utility.

.DLL Windows dynamic-link library (DLL) that is produced by LIB and LINK.

.DPE An intermediate file that is produced by the GenDepex build tool from a .TMP1 file.

.DPX A binary dependency file that is produced by the GenSection build tool from a
.TMP2 or .DPE file.

.DSC A build description text file, which defines the components, build rules and commands,
FV definitions, and package file definitions for a build tip.

.DXE An intermediate DXE driver or DXE Foundation file that is produced by the
GenFfsFile build tool from .PKG, .DPX, .SST, .PEI, and .PE32 files.

.DXS A dependency text source file.

.EFI An intermediate file that is produced by the FwImage build tool from a .DLL file.

.EXE An executable program that is produced by LIB and LINK.

.EXP An export file. Exports a function from a program to allow other programs to call the
function. Produced by LINK.

.FFS An intermediate file that is produced by the GenFfsFile build tool from .PKG and
other files.

.FV A partial flash volume file that is produced by the GenFvImage build tool.

.H C source header File.

.HDR The makefile.HDR file that is produced by the GenMake build tool from a make.INF
file.

.I An Intel Itanium assembler include file.

EFI Developer Kit (EDK) Getting Start Guide

36 January 2005 Version 0.41

File Extension Description

.INC An assembly include file.

.INF Input file that specifies information for various build tools.

.LIB An intermediate library file that is produced by LIB and LINK.

.MAP A text file that contains information about the program being linked, including the groups
in the program and a list of public symbols. LINK names the map file with the base
name of the program and the file name extension .MAP.

.OBJ A file containing object code or data generated by a compiler or an assembler from the
source code of an application.

.PDB Platform-Dependent Driver. A file used by the Platform Builder build tools to store
information about a user’s application. A .PDB file speeds linking during the debugging
phase of development by keeping the debugging information separate from the object
files. Produced by LINK.

.PE32 Portable Executable (PE) 32 (bit) file format that is produced by the GenSection
build tool from an .EFI file.

.PEI An intermediate file that is produced by the GenFfsFile build tool from .PKG,
.PEIM, and .PIC files.

.PEIM An intermediate file that is produced by the GenSection build tool from .INF, .MAP,
.BIN, and .TMP files.

.PKG A package file that is used by the GenFfsFile build tool. This text source file
designates which files the GenFfsFile build tool should use along with other
information.

.PRO An intermediate file that is produced by the Intel Itanium compiler from .S files. This file is
used by the Intel Itanium assembler to make an .OBJ file.

.RAW An intermediate file that is produced by the GenBsfImage build tool from .INF, .BIN,
and .SYM files.

.S An Intel Itanium assembler source code file.

.SBR Input files for BSCMAKE. The compiler creates a .SBR file for each object file (.OBJ)
that it compiles. BSCMAKE builds a browse information file describing classes,
functions, data, macros, and types in your program.

.SST A terminator section file that is produced by the GenSection build tool.

.SYM The symbols file that is produced by the Pe2Sym build tool from .PDB files and that is
also produced by other build tools.

.TMP An intermediate file that is produced by the Pe2Bin build tool from a .DLL file.

.TMP1 An intermediate file that is produced by the precompiler from a .DXS file.

.TMP2 An intermediate file that is produced by the GenDepex build tool from a .TMP1 file.

	EFI Developer Kit (EDK) Getting Started Guide
	Revision History
	Contents
	1 Introduction
	1.1 Summary
	1.2 Overview
	1.3 EDK Build Tips
	1.3.1 NT32 - Edk\Sample\Platform\Nt32\Build
	1.3.2 IPF - Edk\Sample\Platform\IPF\Build

	1.4 Glossary
	1.5 Conventions Used in This Document
	1.5.1 Pseudo-Code Conventions
	1.5.2 Typographic Conventions

	2 Development System Setup
	2.1 Install Tools

	3 Quick Start Guide
	3.1 Downloading Source Code
	3.1.1 Downloading Using a Link
	3.1.2 Downloading Using the Web Site

	3.2 Running the Nt32 Emulation
	3.2.1 Modify System.cmd to Match Your Configuration
	3.2.2 The Easy Way to Build from the Command Shell

	3.3 Using VC++ IDE
	3.3.1 Build.cmd Source

	3.4 Debug Tips

	4 Building the EDK
	4.1 Build Configuration Files
	4.2 Environmental Variables
	4.2.1 EDK Platform Builds
	4.2.2 Microsoft Tools Environment Variables

	4.3 Typical Build Flow
	4.3.1 Build Overview
	4.3.2 Invoke nmake
	4.3.3 Include PlatformTools.env
	4.3.4 Build the “build_tools” Target
	4.3.5 Build the “makefiles” Target
	4.3.6 Build the “builds” Target
	4.3.7 Build the “fds” Target
	4.3.8 Custom Build Steps

	4.4 Build Inputs and Outputs
	4.5 Build Dependencies
	4.5.1 Build Dependency Limitations

	4.6 Common Build Issues

	5 Miscellaneous Operations
	5.1 Setting up the Console
	5.2 EFI Shell Drive Mapping
	5.3 Cleaning a Build Tip
	5.4 Adding a New Component to a Build Tip
	5.5 Building a Driver for EBC
	5.6 Specifying Destination Firmware Volumes for a Component

	6 Directory Structure of the Release Package
	6.1 Description of Directory Structure
	6.1.1 \Foundation
	6.1.1.1 \Foundation\Core
	6.1.1.2 \Foundation\Cpu
	6.1.1.3 \Foundation\Efi
	6.1.1.4 \Foundation\Framework
	6.1.1.5 \Foundation\Guid
	6.1.1.6 \Foundation\Include
	6.1.1.7 \Foundation\Library
	6.1.1.8 \Foundation\Ppi
	6.1.1.9 \Foundation\Protocol
	6.1.2 \Sample
	6.1.2.1 \Sample\Bus
	6.1.2.2 \Sample\Chipset
	6.1.2.3 \Sample\Cpu
	6.1.2.4 \Sample\Include
	6.1.2.5 \Sample\Library
	6.1.2.6 \Sample\Platform
	6.1.2.7 \Sample\Tools
	6.1.2.8 \Sample\Universal
	6.1.3 \Other
	6.1.3.1 \Other\Maintained
	6.1.3.2 \Other\NonMaintained (not existing)

	6.2 Rules

	Appendix A File Name Extensions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

