I ntel Draft for Review

Intel® Platform Innovation Framework
for EFI
Firmware Volume Specification

Draft for Review

Version 0.9
September 16, 2003

In

-
Firmware Volume Specification Draft for Review tel

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY
OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Except for a limited copyright license
to copy this specification for internal use only, no license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted herein.

Intel disclaims all liability, including liability for infringement of any proprietary rights, relating to implementation of information
in this specification. Intel does not warrant or represent that such implementation(s) will not infringe such rights.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.”
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them.

This document is an intermediate draft for comment only and is subject to change without notice. Readers should not design
products based on this document.

Intel, the Intel logo, and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

* Other names and brands may be claimed as the property of others.
Copyright © 2000-2003, Intel Corporation.

Intel order number xxxxxx-001

September 2003 Version 0.9

I ntel Draft for Review

Revision History

Revision Revision History Date
0.9 First public release. 9/16/03

Version 0.9 September 2003 iii

-
Firmware Volume Specification Draft for Review tel

iv September 2003 Version 0.9

I ntel Draft for Review

Contents
I 14 o T 11T o) o TN 9
L@ LYY Y/ L=, T 9
S ToTo] o1 Y RUSPPUPPPRURIRt 9
(=) (0] g F= | 1= 2 9
Conventions Used in ThiS DOCUMENL...........ooiuuiiiie e et e e e e e e eaas 10
Data Structure DesCriplioNScoooiiiiiiiiiii e eaaaans 10
ProtoCOl DESCHIPHIONSuuiiiii i e e e e e e e e e e e e e e e e e eeeeeannees 11
Procedure DESCriPLIONScooi it e e et e e e e e e e eeeaanee 11
Pseudo-Code CONVENLIONSoiiveiiiei ittt e e e e e e e e e e e e eaaaas 12
TypographiC CONVENLIONSciii i e 12
2 DeSign DiSCUSSIONcccciieeceeeeeessssssssss s s e s s s s s e e s s s s s s nnsnssssssssssssssssssssssseseeennnnnns 15
FIrmMWAre VOIUMESonoeeiie ettt e e e e e e e e e e e e b e e s e e e e e ean e eans 15
Firmware VOolumeE ProtOCOL....... e e e e 15
Firmware Volume ProtoCol OVEIVIEWouuiieiiiieie et 15
Firmware Volume ProtoCol STAcCKSoieeiiiii e 15
Firmware Volume Protocol Stack: Typicalccccoeeeeeiiiiiiiiiiiiiiei e, 15

Firmware Volume Protocol Stack: Memory-Mapped Firmware Volume
P2 10 \11T= T (3 16
Firmware Volume Protocol Stack: Direct Interface with Hardware................. 17
Framework Firmware Image FOrmat...........oooo e 17
Framework Firmware Image Format Introduction...............ccceveiiiiiiiiiii, 17
T STRS T o] 1= 18
(R LRSS (o) [18
Example File IMage ... 18
SECHON LAYOUL.....ooiiiiiiiiiiii e 19
Architectural SeCtion TYPESuuuuiiiiiiiiiiiiiiiiiee e 20
Section EXtraction ProtOCOIS ... 21
Section Extraction Protocol OVEIVIEW............oviveiiiiiiiiiee e 21
GUIDed Section Extraction Protocol OVerviewoccoeeeveieiivieieiieieiiiees 21
1T T N/ oY= TP 21
File TYPES OVEIVIEWcooiiiiiiiiiiiee ettt 21
B3 0o Yo [0 1Y 1011 o o - 23
[pY oo [UTe3{T0] N 23
Firmware VOolUME ProtOCOL....... e et a e 24
EFI_FIRMWARE_VOLUME_PROTOCOLcoitiiie et 24
EFI_FIRMWARE_VOLUME_PROTOCOL. GetVolumeAttributes()ceeervrrernnnns 26
EFI_FIRMWARE_VOLUME_PROTOCOL. SetVolumeAttributes()ccceeeerrrrrrnnnns 29
EFI_FIRMWARE_VOLUME_PROTOCOL.ReadFile().......uuvrrrrrrrriiiiiiiiiiiiiiiaaaaaeaaeeeann, 31
EFI_FIRMWARE_VOLUME_PROTOCOL. ReadSection()cccccccvvrrviiiieiiiieiaaaaaaeennn. 35
EFI_FIRMWARE_VOLUME_PROTOCOL.WHriteFile().........uvvrrrrreeiieiiiiiiiiiieeeeeeeeeeeee, 38
EFI_FIRMWARE_VOLUME_PROTOCOL.GetNextFile()ccvvveereeiiiiiiiiiiieeeeeeeeee, 42

Version 0.9 September 2003 v

Firmware Volume Specification Draft for Review Intel
Framework Firmware Image FOrmat..........oooo e 44
1 SRSt (0] 1 44
EFI_COMMON_SECTION_HEADER........coi et 44
Encapsulation SECLONSueiiiiiii i 46
EFI_SECTION_COMPRESSION......ccoieteieeeeeee e 46
EFI_SECTION_GUID_DEFINEDccoeeeiieeeeee e, 48

[ICT= | RS T=T o1 [o] o < 51
EFI_SECTION_PES2....... e 51
EFI_SECTION_PIC ... e 52
EFI_SECTION_TEou i 53
EFI_SECTION_DXE_DEPEXcioetii et 54
EFI_SECTION_VERSIONooiitiiieeee e 55
EFI_SECTION_USER_INTERFACE ... e, 56
EFI_SECTION_COMPATIBILITY16 ..ccovveeeeeeeee e 57
EFI_SECTION_FIRMWARE_VOLUME_IMAGE............coovvreerernnnnn. 58
EFI_SECTION_FREEFORM_SUBTYPE_GUID.......c..ccccevvvvreeeeeennnn. 59
EFI_SECTION_RAW ... 60
EFI_SECTION_PEI_DEPEX...... i 61

Section EXtraction ProtOCOloovvuiiiiieiee e 62
EFI_SECTION_EXTRACTION_PROTOCOLuciieeieeeeeeeeeeeeeeeeeee e, 62
EFI_SECTION_EXTRACTION_PROCOCOL.OpenSectionStream()............ 63
EFI_SECTION_EXTRACTION_PROCOCOL.GetSection()cceeeeveereennees 64
EFI_SECTION_EXTRACTION_PROCOCOL.CloseSectionStream() 69

GUIDed Section Extraction ProtocColccoouuiiiiiiiiii e 70
EFI_GUIDED_SECTION_EXTRACTION_PROTOCOLcccooovivvevveeeeeeenn. 70
EFI_GUIDED_SECTION_EXTRACTION_PROCOCOL. ExtractSection()....71

FHlE Ty DS e e e e e e e e 73
EFIL_FV_FILETYPE ..o 73
EFL_FV_FILETYPE_ALL ... 73
EFI_FV_FILETYPE_RAW ... 74
EFI_FV_FILETYPE_FREEFORM......ciiiiieeeeeeeee et 74
EFI_FV_FILETYPE_SECURITY_COREotttoiieeeieee e, 74
EFI_FV_FILETYPE_PEI_CORE.......oo e 75
EFI_FV_FILETYPE_DXE_CORE ... 75
EFI_FV_FILETYPE_PEIM.....o oo 76
EFI_FV_FILETYPE_DRIVER ... 76
EFI_FV_FILETYPE_COMBINED_PEIM_DRIVERcceiiieiiieeeeeeeeeeee, 77
EFI_FV_FILETYPE_APPLICATION ..ot 78
EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE..........ccoeeviiieeieeeennn. 78

vi

September 2003 Version 0.9

intel

Draft for Review Contents
Figures
Figure 2-1. Firmware Volume Protocol Stack (Typical)ccoouviiieiiiiiiiiiiicee e 16
Figure 2-2. Firmware Volume Protocol Stack (Memory-Mapped Firmware Volume
HAFAWAIE) ... e 16
Figure 2-3. Firmware Volume Protocol Stack (Direct Interface with Hardware)................... 17
Figure 2-4. Example File Image (Graphical and Tree Representations)ccccce....... 19
Figure 2-5. General Section FOrmat............oooo i 20
Tables
Table 3-1. Supported Alignments for EFI_FV_FILE ATTRIB ALIGNMENT.......cccccccerrnnns 33
Table 3-2. Possible AuthenticationStatus BitValues..............ccccooooiiiiiiiiiiiiiiiies 67
Version 0.9 September 2003 vii

-
Firmware Volume Specification Draft for Review tel

viii September 2003 Version 0.9

I ntel Draft for Review

1
Introduction

Overview

This specification defines the Framework image format and its associated file access protocols that
are required for an implementation the Intel® Platform Innovation Framework for EFI (hereafter
referred to as the “Framework™). This specification does the following:

e Describes the Firmware Volume Protocol, the Framework firmware image format, and
Framework file types

e Provides code definitions for services, functions, and data types that are architecturally required
by the Intel® Platform Innovation Framework for EFI Architecture Specification

Scope
This specification defines the following:

e Firmware storage interfaces
e The associated binary format that may be accessed using these interfaces

It does not, however, define the binary format of the data as it actually exists in the storage media.

Rationale

Unlike a traditional legacy BIOS, which generally is monolithic and contains few independent
components, Framework-based firmware is highly modular, consisting of many small,
independently linked components. A new approach to firmware storage is needed to ensure the
following:

e Efficient usage of the firmware devices

e A flexible storage strategy that allow various components to be found and retrieved without
a priori knowledge of exactly where to find them or the methods that are required to retrieve
them

Version 0.9 September 2003 9

-
Firmware Volume Specification Draft for Review Intel

Conventions Used in This Document

This document uses the typographic and illustrative conventions described below.

Data Structure Descriptions

10

Intel® processors based on 32-bit Intel® architecture (IA-32) are “little endian” machines. This
distinction means that the low-order byte of a multibyte data item in memory is at the lowest
address, while the high-order byte is at the highest address. Processors of the Intel® Itanium®
processor family may be configured for both “little endian” and “big endian” operation. All
implementations designed to conform to this specification will use “little endian” operation.

In some memory layout descriptions, certain fields are marked reserved. Software must initialize
such fields to zero and ignore them when read. On an update operation, software must preserve
any reserved field.

The data structures described in this document generally have the following format:

ST RU CTU RE NAM E . The formal name of the data structure.

Summary: A brief description of the data structure.

Prototype: A “C-style” type declaration for the data structure.

Parameters: A brief description of each field in the data structure prototype.

Description: A description of the functionality provided by the data structure,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by

this data structure.

September 2003 Version 0.9

in
tel" Draft for Review Introduction

Protocol Descriptions

The protocols described in this document generally have the following format:

P I’OtOCO| N dME@. The formal name of the protocol interface.

Summary: A brief description of the protocol interface.
GUID: The 128-bit Globally Unique Identifier (GUID) for the protocol
interface.

Protocol Interface Structure:
A “C-style” data structure definition containing the procedures
and data fields produced by this protocol interface.

Parameters: A brief description of each field in the protocol interface
structure.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used in the protocol

interface structure or any of its procedures.

Procedure Descriptions

The procedures described in this document generally have the following format:

P roced ure N am e() «» The formal name of the procedure.

Summary: A brief description of the procedure.

Prototype: A “C-style” procedure header defining the calling sequence.

Parameters: A brief description of each field in the procedure prototype.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by

this procedure.

Status Codes Returned: A description of any codes returned by the interface. The
procedure is required to implement any status codes listed in this
table. Additional error codes may be returned, but they will not
be tested by standard compliance tests, and any software that
uses the procedure cannot depend on any of the extended error
codes that an implementation may provide.

Version 0.9 September 2003 11

Firmware Volume Specification

Draft for Review I ntel

Pseudo-Code Conventions

Pseudo code is presented to describe algorithms in a more concise form. None of the algorithms in
this document are intended to be compiled directly. The code is presented at a level corresponding

to the surrounding text.

In describing variables, a /ist is an unordered collection of homogeneous objects. A queue is an
ordered list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be First In

First Out (FIFO).

Pseudo code is presented in a C-like format, using C conventions where appropriate. The coding
style, particularly the indentation style, is used for readability and does not necessarily comply with
an implementation of the Extensible Firmware Interface Specification.

Typographic Conventions

This document uses the typographic and illustrative conventions described below:

12

Plain text

Plain text (blue)

Bold

Italic

BOLD Monospace

Bold Monospace

Italic Monospace

Plain Monospace

The normal text typeface is used for the vast majority of the descriptive
text in a specification.

In the online help version of this specification, any plain text that is
underlined and in blue indicates an active link to the cross-reference.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification.

In text, a Bold typeface identifies a processor register name. In other
instances, a Bold typeface can be used as a running head within a
paragraph.

In text, an [talic typeface can be used as emphasis to introduce a new
term or to indicate a manual or specification name.

Computer code, example code segments, and all prototype code
segments use a BOLD Monospace typeface with a dark red color.
These code listings normally appear in one or more separate paragraphs,
though words or segments can also be embedded in a normal text
paragraph.

In the online help version of this specification, words in a

Bold Monospace typeface that is underlined and in blue indicate an
active hyperlink to the code definition for that function or type definition.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification. Also, these inactive links in the
PDF may instead have a Bold Monospace appearance that is
underlined but in dark red. Again, these links are not active in the PDF of
the specification.

In code or in text, words in ITtalic Monospace indicate placeholder
names for variable information that must be supplied (i.e., arguments).

In code, words ina Plain Monospace typeface that is a dark red
color but is not bold or italicized indicate pseudo code or example code.
These code segments typically occur in one or more separate paragraphs.

September 2003 Version 0.9

in
tel' Draft for Review Introduction

See the master Framework glossary in the Framework Interoperability and Component
Specifications help system for definitions of terms and abbreviations that are used in this document
or that might be useful in understanding the descriptions presented in this document.

See the master Framework references in the Interoperability and Component Specifications help
system for a complete list of the additional documents and specifications that are required or
suggested for interpreting the information presented in this document.

The Framework Interoperability and Component Specifications help system is available at the
following URL:

http://www.intel.com/technology/framework/spec.htm

Version 0.9 September 2003 13

http://www.intel.com/technology/framework/spec.htm

-
Firmware Volume Specification Draft for Review tel

14 September 2003 Version 0.9

I ntel Draft for Review

2
Design Discussion

Firmware Volumes

A firmware device is a persistent physical repository that contains firmware code and/or data. It is
typically a flash component but may be some other type of persistent storage. A single physical
firmware device may be divided into smaller pieces to form multiple logical firmware

devices. Similarly, multiple physical firmware devices may be aggregated into one larger logical
firmware device. A logical firmware device is called a firmware volume. In the Framework, the
basic storage repository for data and/or code is the firmware volume. Each firmware volume is
organized into a file system. As such, the file is the base unit of storage for Framework firmware.

If the files contained in a firmware volume must be accessed from either the Security (SEC) or Pre-
EFTI Initialization (PEI) phases or early in the Driver Execution Environment (DXE) phase, the
firmware volume must be memory mapped and follow the Framework Firmware File System (FFS)
format, which is defined in the /nte/® Platform Innovation Framework for EFI Firmware File
System Specification. The SEC, PEI, and DXE phases must be able to parse the FFS and
Framework firmware image format as necessary. As such, the FFS is architectural for these types of
firmware volumes.

Firmware Volume Protocol

Firmware Volume Protocol Overview

The DXE phase accesses firmware volumes using the file abstraction contained in the Firmware
Volume Protocol. The Firmware Volume Protocol allows DXE to access all types of firmware
volumes, including the following:

e Firmware volumes that are not memory mapped
e Firmware volumes that do not implement the FFS

Firmware Volume Protocol Stacks

Firmware Volume Protocol Stack: Typical

Typically, the Firmware Volume Protocol will be produced by a file system driver and will layer on
top of the Firmware Volume Block Protocol to access the firmware volume hardware. This
implementation yields the protocol stack shown in the figure below.

See the Intel® Platform Innovation Framework for EFI Firmware Volume Block Specification for
more information on the Firmware Volume Block Protocol.

Version 0.9 September 2003 15

-
Firmware Volume Specification Draft for Review Intel

Firmware Volume
Protocol driver

Firmware Volume Block
Protocol driver

T

N~

Firmware Volume
hardware

Figure 2-1. Firmware Volume Protocol Stack (Typical)

Firmware Volume Protocol Stack: Memory-Mapped Firmware Volume
Hardware
However, there is an exception to this typical stack. If the firmware volume hardware is memory
mapped, the Firmware Volume Protocol accesses the firmware volume at its memory address for
reads. All other operations still go through the Firmware Volume Block Protocol. This scenario
yields the protocol stack shown in the figure below.

See the Intel® Platform Innovation Framework for EFI Firmware Volume Block Specification for
more information on the Firmware Volume Block Protocol.

Firmware Volume Protocol driver

All services
except read

: Read services
Firmware Volume Block only

Protocol driver

Firmware Volume hardware

Figure 2-2. Firmware Volume Protocol Stack (Memory-Mapped Firmware Volume Hardware)

16 September 2003 Version 0.9

L
Intel Draft for Review Design Discussion

Firmware Volume Protocol Stack: Direct Interface with Hardware

The only other case is the degenerate case where the Firmware Volume Protocol subsumes all
functionality and interfaces with the hardware directly, as shown in the figure below.

Firmware Volume
Protocol driver

T

N~

Firmware Volume

Figure 2-3. Firmware Volume Protocol Stack (Direct Interface with Hardware)

Framework Firmware Image Format

Framework Firmware Image Format Introduction

Regardless of the underlying file system implementation, consumers of the Firmware Volume
Protocol must know what the binary format of the file data is. The underlying storage is likely to be
FFS, but it may be any of the following:

e FAT32
e NTFS
e NFS

e FTP

e Any one of many other ways files are represented

In an operating system context, the contents of a file do not change depending on the type of file
system in which they are stored. Assume an executable program named “HelloWorld.” The
program image “HelloWorld” is exactly the same whether it is loaded from a FAT12 floppy or an
NFS drive.

Version 0.9 September 2003 17

-
Firmware Volume Specification Draft for Review Intel

File Sections

File Sections

Many file formats have separate discrete “parts” within them. These “parts” are called file sections,
or just sections for short.

All sections begin with a header that declares the type and length of the section. The section
headers must be 4 bytes aligned within the parent file’s image.

While there are many types of sections, they fall into the following two broad categories:

e Encapsulation sections
e Leaf sections

Encapsulation sections are essentially containers that hold other sections. The sections contained
within an encapsulation section are known as child sections. In the reciprocal relationship, the
encapsulation section is known as the parent section. Encapsulation sections may have many
children. An encapsulation section’s children may be leaves and/or more encapsulation sections and
are called peers relative to each other. An encapsulation section does not contain data directly;
instead it is just a vessel that ultimately terminates in leaf sections.

Files that are built with sections can be thought of as a tree, with encapsulation sections as nodes
and leaf sections as the leaves. The file image itself can be thought of as the root and may contain
an arbitrary number of sections. Sections that exist in the root have no parent section but are still
considered peers.

Unlike encapsulation sections, leaf sections directly contain data and do not contain other
sections. The format of the data contained within a leaf section is defined by the type of the
section.

Example File Image

18

The figure below is an example file image comprised of sections. It shows the same file in two
ways:

e Graphically

e Asatree

The portion labeled “Graphical Representation” graphically shows the encapsulation of sections
within the file, while the “Tree Representation” portion shows a tree representation of the same file.

September 2003 Version 0.9

L
Intel Draft for Review Design Discussion

L6 Complete file image

Encapsulation section (En)

L5

Leaf section (Ln)

L4

E2

E1

L3

L2

L1 e e e
EO 0 °

Graphical Representation Tree Representation

Figure 2-4. Example File Image (Graphical and Tree Representations)

In the example shown in the figure above, the file image root contains two encapsulation sections
(EO and E1) and one leaf section (L3). The first encapsulation section (EQ) contains children, all of
which are leaves (L0, L1, and L2). The second encapsulation section (E1) contains two children,
one that is an encapsulation (E2) and the other that is a leaf (L6). The last encapsulation section
(E2), in turn, has two children that are both leaves (L4 and L5).

Section Layout
Each section begins with a section header, followed by data defined by the section type.

The section headers are 4 bytes aligned within the parent file’s image. If padding is required
between the end of one section and the beginning of the next to achieve the 4-byte alignment
requirement, all padding bytes must be initialized to zero.

Many section types are variable in length and are more accurately described as data streams rather
than data structures. Since it is not possible to describe variable-sized structures in the C

Version 0.9 September 2003 19

Firmware Volume Specification

Draft for Review

intel

programming language, Backus-Naur Form (BNF) is used to describe section types that have
variable lengths. C data structures are considered terminals with respect to the BNF description.

Regardless of section type, all section headers begin with a 24-bit integer indicating the section
size, followed by an 8-bit section type. The format of the remainder of the section header and the
section data is defined by the section type. The figure below shows the general format of a section.

31

Section data: Format defined by section type

Remainder of section header: Format defined by section type (not all sections will have this portion)

Type

Figure 2-5. General Section Format

Architectural Section Types

20

This specification defines the following architectural types of sections.

Encapsulation Section Types

Compression
GUID-defined

Leaf Section Types

PE32+ image
Position-independent code (PIC) image

Terse Executable (TE)
DXE dependency expression
Version

User interface file name
Compatibilityl 6 image

Firmware volume image
Free-form subtype GUID
Raw

PEI dependency expression

See Code Definitions: Framework Firmware Image Format for the definitions of the section types
listed above.

September 2003

Version 0.9

L
I ntel Draft for Review Design Discussion

Section Extraction Protocols

Section Extraction Protocol Overview

Because some types of files may be arbitrarily complex with respect to encapsulation sections,
a code-friendly way of retrieving sections is necessary to facilitate a reasonable implementation
of the Firmware Volume Protocol. The Section Extraction Protocol is the API that abstracts the
complexities of file construction and provides a straightforward mechanism to extract sections
from files.

It is expected that drivers producing the Firmware Volume Protocol will be the only consumers of
the Section Extraction Protocol. All other consumers of file sections must use the Firmware
Volume Protocol’s ReadFile () API Furthermore, it is expected that all caching of firmware
files and sections thereof will be done within the implementation of the Section Extraction
Protocol. These two guidelines enable both performance and code size optimization, as well as
preventing cache coherency problems with respect to firmware files.

GUIDed Section Extraction Protocol Overview

The GUIDed Section Extraction Protocol is used by the section extraction driver to enable
extraction of GUIDed sections. It is essentially a “plug-in” to enable extensibility to
section extraction.

File Types

File Types Overview

Consider an application file named FOO.EXE. The format of the contents of FOO.EXE is implied
by the “.EXE” in the file name. Depending on the operating environment, this extension typically
indicates that the contents of FOO.EXE are a PE/COFF image and follow the PE/COFF image
format.

Similarly, the Framework image format defines the contents of a file that is returned by the
firmware volume interface.

The Framework image format defines an enumeration of file types. For example, the type

EFI FV FILETYPE DRIVER indicates that the file is a DXE driver and is interesting to the
DXE Dispatcher. In the same way, files with the type EFI FV FILETYPE PEIM are interesting
to the PEI Dispatcher. In an FFS firmware volume, the file type is captured in the Type field of the
FFS file header, EFI_FFS FILE HEADER; see the [ntel® Platform Innovation Framework for
EFI Firmware File System Specification for the definition of the FFS file header.

This specification defines the following ten architectural file types:
e EFI FV FILETYPE RAW

e EFI FV FILETYPE FREEFORM

e EFI FV FILETYPE SECURITY CORE

e EFI FV FILETYPE PEI CORE

e EFI FV FILETYPE DXE CORE

e EFI FV FILETYPE PEIM

Version 0.9 September 2003 21

Firmware Volume Specification

22

EFI

Draft for Review

FV _FILETYPE DRIVER

EFI

FV FILETYPE COMBINED PEIM DRIVER

EFI

FV FILETYPE APPLICATION

EFI

FV FILETYPE FIRMWARE VOLUME IMAGE

An additional file type, EFI FV FILETYPE ALL, is defined in “Code Definitions,” but it is only
a pseudo type; see its code definition for details.

September 2003

Version 0.9

Draft for Review

3
Code Definitions

Introduction

This section contains the basic definitions of the Framework image format and its associated file
access protocols. The following protocols and data types are defined in this section:

EFI

FIRMWARE VOLUME PROTOCOL

EFI

COMMON SECTION HEADER and the defined section types

EFI

SECTION EXTRACTION PROTOCOL

EFI

GUIDED SECTION EXTRACTION PROTOCOL

EFI

FV FILETYPE and the defined Framework file types

This section also contains the definitions for additional data types and structures that are
subordinate to the structures in which they are called. The following types or structures can be
found in “Related Definitions” of the parent data structure or function definition:

Version 0.9

EFT

FV ATTRIBUTES

EFT

FV FILE ATTRIBUTES

EFT

FV WRITE POLICY

EFT

SECTION TYPE

EFT

COMPRESSION SECTION HEADER

September 2003 23

-
Firmware Volume Specification Draft for Review Intel

Firmware Volume Protocol
EFI_ FIRMWARE_VOLUME_PROTOCOL

Summary

The Firmware Volume Protocol provides file-level access to the firmware volume. Each firmware
volume driver must produce an instance of the Firmware Volume Protocol if the firmware volume
is to be visible to the system. The Firmware Volume Protocol also provides mechanisms for
determining and modifying some attributes of the firmware volume.

GUID
// 389F751F-1838-4388-8390-CD8154BD27F8

#define EFI_FIRMWARE VOLUME PROTOCOL GUID \
{ 0x389F751F, 0x1838, 0x4388, 0x83, 0x90, 0xCD, 0x81, \
0x54, O0xBD, 0x27, OxF8 }

Protocol Interface Structure
typedef struct {

EFI FV GET ATTRIBUTES GetVolumeAttributes;
EFI FV SET ATTRIBUTES SetVolumeAttributes;
EFI FV READ FILE ReadFile;

EFI FV READ SECTION ReadSection;

EFI FV WRITE FILE WriteFile;

EFI FV GET NEXT FILE GetNextFile;

UINT32 KeySize;

EFI_HANDLE ParentHandle;

} EFI_FIRMWARE VOLUME PROTOCOL;

Parameters
GetVolumeAttributes

Retrieves volume capabilities and current settings. See the
GetVolumeAttributes () function description.

SetVolumeAttributes

Modifies the current settings of the firmware volume. See the
SetVolumeAttributes () function description.

ReadFile

Reads an entire file from the firmware volume. See the ReadFile () function
description.

ReadSection

Reads a single section from a file into a buffer. See the ReadSection () function
description.

24 September 2003 Version 0.9

|]
I ntel Draft for Review Code Definitions

WriteFile

Writes an entire file into the firmware volume. See the WriteFile () function
description.

GetNextFile

Provides service to allow searching the firmware volume. See the GetNextFile ()

function description.

KeySize
Data field that indicates the size in bytes of the Key input buffer for the
GetNextFile () APL

ParentHandle

Handle of the parent firmware volume. Type EFI_HANDLE is defined in
InstallProtocolInterface () inthe EFI 1.10 Specification.

Description

The Firmware Volume Protocol contains the file-level abstraction to the firmware volume as well
as some firmware volume attribute reporting and configuration services. The Firmware Volume
Protocol is the interface used by all parts of DXE that are not directly involved with managing the
firmware volume itself. This abstraction allows many varied types of firmware volume
implementations. A firmware volume may be a flash device or it may be a file in the EFI system
partition, for example. This level of firmware volume implementation detail is not visible to the
consumers of the Firmware Volume Protocol.

Version 0.9 September 2003

25

-
Firmware Volume Specification Draft for Review tel

EFI_FIRMWARE_VOLUME_PROTOCOL. GetVolumeAttributes()

Summary

Returns the attributes and current settings of the firmware volume.

Prototype

EFI_STATUS

(EFIAPI * EFI_FV GET ATTRIBUTES) (
IN EFI FIRMWARE VOLUME PROTOCOL *This,
OUT EFI FV ATTRIBUTES *FvAttributes
) ;

Parameters
This
Indicates the EFI FIRMWARE VOLUME PROTOCOL instance.
FvAttributes

Pointer to an EFI FV ATTRIBUTES in which the attributes and current settings
are returned. Type EFI_FV_ATTRIBUTES is defined in “Related Definitions”
below.

Description

Because of constraints imposed by the underlying firmware storage, an instance of the Firmware
Volume Protocol may not be to able to support all possible variations of this architecture. These
constraints and the current state of the firmware volume are exposed to the caller using the
GetVolumeAttributes () function.

GetVolumeAttributes () is callable only from EFI TPL NOTIFY and below. Behavior of

GetVolumeAttributes () atany EFI_TPL above EFI_TPL NOTIFY is undefined. Type
EFI_TPL is defined in RaiseTPL () in the EFI 1.10 Specification.

Related Definitions

//**

// EFI_FV ATTRIBUTES
[/ kRkkkkkkkkkhhkkkhkkhkhkhkhhhhhhhkkhhhhhhkhkhhkhh ok hhhk ko dkhhhkk

typedef UINT64 EFI FV ATTRIBUTES;

//**

// EFI_FV ATTRIBUTES bit definitions
AR R R e e

#define EFI FV READ DISABLE CAP 0x0000000000000001
#define EFI_FV READ ENABLE CAP 0x0000000000000002
#define EFI FV READ STATUS 0x0000000000000004

26 September 2003 Version 0.9

|]
I ntel Draft for Review Code Definitions

#define EFI_FV WRITE DISABLE CAP 0x0000000000000008
#define EFI FV WRITE ENABLE CAP 0x0000000000000010
#define EFI_FV WRITE STATUS 0x0000000000000020
#define EFI_FV LOCK CAP 0x0000000000000040
#define EFI_FV LOCK STATUS 0x0000000000000080

#define EFI_FV WRITE POLICY RELIABLE 0x0000000000000100

#define EFI_FV ALIGNMENT CAP 0x0000000000008000
#define EFI_FV_ALIGNMENT 2 0x0000000000010000
#define EFI FV ALIGNMENT 4 0x0000000000020000
#define EFI_FV ALIGNMENT 8 0x0000000000040000
#define EFI_FV ALIGNMENT 16 0x0000000000080000
#define EFI FV ALIGNMENT 32 0x0000000000100000
#define EFI FV ALIGNMENT 64 0x0000000000200000
#define EFI_FV ALIGNMENT 128 0x0000000000400000
#define EFI_FV ALIGNMENT 256 0x0000000000800000
#define EFI_FV ALIGNMENT 512 0x0000000001000000
#define EFI_FV ALIGNMENT 1K 0x0000000002000000
#define EFI_FV ALIGNMENT 2K 0x0000000004000000
#define EFI FV ALIGNMENT 4K 0x0000000008000000
#define EFI_FV ALIGNMENT 8K 0x0000000010000000
#define EFI_FV ALIGNMENT 16K 0x0000000020000000
#define EFI_FV ALIGNMENT 32K 0x0000000040000000
#define EFI_FV ALIGNMENT 64K 0x0000000080000000

// EFI_FV ATTRIBUTES bit semantics

Following is a description of the fields in the above definition.

EFI_FV_READ_DISABLED_CAP Set to 1 if it is possible to disable reads from the firmware volume.
EFI_FV_READ_ENABLED_CAP Set to 1 if it is possible to enable reads from the firmware volume.
EFI_FV_READ_STATUS Indicates the current read state of the firmware volume. Setto 1 if
reads from the firmware volume are enabled.
EFI_FV_WRITE_DISABLED_CAP Set to 1 if it is possible to disable writes to the firmware volume.
EFI_FV_WRITE_ENABLED_CAP Set to 1 if it is possible to enable writes to the firmware volume.
EFI_FV_WRITE_STATUS Indicates the current state of the firmware volume. Set to 1 if writes
to the firmware volume are enabled.
EFI_FV_LOCK_CAP Set to 1 if it is possible to lock firmware volume read/write
attributes.

Version 0.9 September 2003 27

Firmware Volume Specification

28

Draft for Review I ntel

EFI_FV_LOCK_STATUS

Set to 1 if firmware volume attributes are locked down.

EFI_FV_WRITE_POLICY_RELIABLE Set to 1 if the firmware volume supports “reliable” writes. See

EFI FIRMWARE VOLUME PROTOCOL.WriteFile().

EFI_FV_ALIGNMENT_CAP

Set to 1 if the firmware volume supports alignment attributes for
fles. fEFI_FV ALIGNMENT CAP==0, then all

EFI_FV ALIGNMENT {alignment value} bits are
cleared to zero.

EFI_FV_ALIGNMENT_{alignment_value}{ Each if these bits indicates whether or not the firmware volume

supports the alignment_value. A value of 1 indicates the
alignment_value is supported.

All other bits are reserved and

Status Codes Returned

are cleared to zero.

\ EFI_SUCCESS

| The firmware volume attributes were returned.

September 2003 Version 0.9

|]
I ntel Draft for Review Code Definitions

EFI_FIRMWARE_VOLUME_PROTOCOL. SetVolumeAttributes()

Summary

Modifies the current settings of the firmware volume according to the input parameter.

Prototype

EFI_STATUS

(EFIAPI * EFI_FV SET ATTRIBUTES) (
IN EFI FIRMWARE VOLUME PROTOCOL *This,
IN OUT EFI FV ATTRIBUTES *FvAttributes
) ;

Parameters
This
Indicates the EFI FIRMWARE VOLUME PROTOCOL instance.
FvAttributes

On input, FvAttributes is a pointer to an EFI FV ATTRIBUTES containing
the desired firmware volume settings. On successful return, it contains the new
settings of the firmware volume. On unsuccessful return, FvAttributes is not
modified and the firmware volume settings are not changed. Type

EFI_FV ATTRIBUTES is defined in GetVolumeAttributes ().

Description

The SetVolumeAttributes () function is used to set configurable firmware volume
attributes. Only EFI FV READ STATUS, EFI FV WRITE STATUS, and

EFI FV LOCK STATUS may be modified, and then only in accordance with the declared
capabilities. All other bits of *FvAttributes are ignored on input. On successful return, all bits
of *FvAttributes are valid and it contains the completed EFI FV ATTRIBUTES

for the volume.

To modify an attribute, the corresponding status bit in the EFI_FV_ATTRIBUTES is set to the
desired value on input. The EFI_FV_LOCK_ STATUS bit does not affect the ability to read or
write the firmware volume. Rather, once the EFI_FV_LOCK_ STATUS bit is set, it prevents further
modification to all the attribute bits.

SetVolumeAttributes () is callable only from EFI_TPL NOTIFY and below. Behavior of
SetVolumeAttributes () atany EFI_TPL above EFI_TPL NOTIFY is undefined. Type
EFI_TPL is defined in RaiseTPL () in the EFI 1.10 Specification.

Version 0.9 September 2003 29

-
Firmware Volume Specification Draft for Review tel

Status Codes Returned
EFI_SUCCESS The requested firmware volume attributes were set and the

resulting EFI FV ATTRIBUTES is returned in
FvAttributes.

EFI_INVALID_PARAMETER FvAttributes:EFI FV READ STATUS issetto1on
input, but the device does not support enabling reads
(FvAttributes:EFI FV READ ENABLE CAP is clear
on return from GetVolumeAttributes ()). Actual volume
attributes are unchanged.

EFI_INVALID_PARAMETER FvAttributes:EFI FV READ STATUS isclearedto 0
on input, but the device does not support disabling reads
(FvAttributes:EFI FV READ DISABLE CAPis
clear on return from GetVolumeAttributes ()). Actual
volume attributes are unchanged.

EFI_INVALID_PARAMETER FvAttributes:EFI FV WRITE STATUS issetto1on

input, but the device does not support enabling writes
(FvAttributes:EFI FV WRITE ENABLE CAPis

clear on return from GetVolumeAttributes ()). Actual
volume attributes are unchanged.
EFI_INVALID_PARAMETER FvAttributes:EFI FV WRITE STATUS is cleared to

0 on input, but the device does not support disabling writes
(FvAttributes:EFI FV WRITE DISABLE CAPis

clear on return from GetVolumeAttributes ()). Actual
volume attributes are unchanged.
EFIl_INVALID_PARAMETER FvAttributes:EFI FV LOCK STATUS is seton input,

but the device does not support locking
(FvAttributes:EFI FV LOCK CAP is clear onreturn

from GetVolumeAttributes ()). Actual volume
attributes are unchanged.

EFI_ACCESS_DENIED Device is locked and does not allow attribute modification
(FvAttributes:EFI FV LOCK STATUS is seton
return from GetVolumeAttributes ()). Actual volume
attributes are unchanged.

30 September 2003 Version 0.9

|]
I ntel Draft for Review Code Definitions

EFI_FIRMWARE_VOLUME_PROTOCOL.ReadFile()

Summary

Retrieves a file and/or file information from the firmware volume.

Prototype

EFI STATUS
(EFIAPI * EFI FV_READ FILE) (
IN EFI FIRMWARE VOLUME PROTOCOL *This,

IN EFI GUID *NameGuid,
IN OUT VOID **Buffer,
IN OUT UINTN *BufferSize,
OUT EFI FV FILETYPE *FoundType,
OUT EFI FV FILE ATTRIBUTES *FileAttributes,
OUT UINT32 *AuthenticationStatus
)i
Parameters
This

Indicates the EFI FIRMWARE VOLUME PROTOCOL instance.

NameGuid

Pointer to an EFI_ GUID, which is the file name. All firmware file names are
EFI_GUIDs. A single firmware volume must not have two valid files with the same
file name EFI_GUID. Type EFI_GUID is defined in
InstallProtocolInterface () inthe EFTI I.10 Specification.

Buffer

Pointer to a pointer to a buffer in which the file or section contents are returned. See
“Description” below for more details on the use of the Buf fer parameter.

BufferSize

Pointer to a caller-allocated UINTN. It indicates the size of the memory represented
by *Buffer. See “Description” below for more details on the use of the
BufferSize parameter.

FoundType

Pointer to a caller-allocated EFI FV FILETYPE. See Code Definitions: File Types
for EFI_FV_FILETYPE related definitions.

FileAttributes

Pointer to a caller-allocated EFI FV FILE ATTRIBUTES. Type
EFI_FV _FILE ATTRIBUTES is defined in “Related Definitions” below.

AuthenticationStatus

Pointer to a caller-allocated UINT32 in which the authentication status is returned.
See “Related Definitions” in

Version 0.9 September 2003 31

-
Firmware Volume Specification Draft for Review Intel

32

EFI SECTION EXTRACTION PROCOCOL.GetSection () for more
information.

Description

ReadFile () is used to retrieve any file from a firmware volume during the DXE phase. The

actual binary encoding of the file in the firmware volume media may be in any arbitrary format as

long as it does the following:

e [tis accessed using the Firmware Volume Protocol.

e The image that is returned follows the image format defined in Code Definitions: Framework
Firmware Image Format.

If the input value of Buf fer==NULL, it indicates the caller is requesting only that the type,
attributes, and size of the file be returned and that there is no output buffer. In this case, the
following occurs:

e *BufferSize isreturned with the size that is required to successfully complete the read.

e The output parameters * FoundType and *FileAttributes are returned with valid
values.

e The returned value of *AuthenticationStatus is undefined.

If the input value of Buf fer ! =NULL, the output buffer is specified by a double indirection of the
Buffer parameter. The input value of *Buffer is used to determine if the output buffer is caller
allocated or is dynamically allocated by ReadFile ().

If the input value of *Buffer ! =NULL, it indicates the output buffer is caller allocated. In this
case, the input value of *BufferSize indicates the size of the caller-allocated output buffer. If
the output buffer is not large enough to contain the entire requested output, it is filled up to the
point that the output buffer is exhausted and EFI_WARN BUFFER TOO SMALL is returned, and
then *Buf ferSize is returned with the size required to successfully complete the read. All other
output parameters are returned with valid values.

If the input value of *Buf fer==NULL, it indicates the output buffer is to be allocated by
ReadFile (). In this case, ReadFile () will allocate an appropriately sized buffer from boot
services pool memory, which will be returned in *Buffer. The size of the new buffer is returned
in *BufferSize and all other output parameters are returned with valid values.

ReadFile () is callable only from EFI TPL NOTIFY and below. Behavior of ReadFile ()

atany EFI_TPL above EFI_TPL NOTIFY is undefined. Type EFI_TPL is defined in
RaiseTPL () inthe EFI 1.10 Specification.

Related Definitions

//**
// EFI_FV_FILE ATTRIBUTES

//**

typedef UINT32 EFI_FV FILE ATTRIBUTES;

#define EFI_FV _FILE ATTRIB ALIGNMENT 0x0000001F

September 2003 Version 0.9

I ntel Draft for Review

31

Code Definitions

5 4 0

Reserved — must be 0

EFI FV FILE ATTRIB
ALIGNMENT

The Reserved field must be set to zero.

The EFI_FV_FILE ATTRIB ALIGNMENT field indicates that the beginning of the data must
be aligned on a particular boundary relative to the beginning of the firmware volume. This
alignment only makes sense for block-oriented firmware volumes. This field is an enumeration
of alignment possibilities. The allowable alignments are powers of two from byte alignment to
64 KB alignment. The supported alignments are described in the table below. All other values

are reserved.

Table 3-1. Supported Alignments for EFI_FV_FILE ATTRIB ALIGNMENT

Required Alignment Alignment Value in
(bytes) Attributes Field

1 0
2 1
4 2
8 3
16 4

32 5
64 6

128 7

256 8

512 9

1KB 10

2 KB 11

4 KB 12

8 KB 13

16 KB 14

32 KB 15

64 KB 16

Version 0.9 September 2003

33

Firmware Volume Specification

34

Status Codes Returned

Draft for Review I ntel

EFI_SUCCESS

The call completed successfully.

EFI_WARN_BUFFER_TOO_SMALL

The buffer is too small to contain the requested output. The
buffer is filled and the output is truncated.

EFI_OUT_OF_RESOURCES

An allocation failure occurred.

EFI_NOT_FOUND

Name was not found in the firmware volume.

EFI_DEVICE_ERROR

A hardware error occurred when attempting to access the
firmware volume.

EFI_ACCESS_DENIED

The firmware volume is configured to disallow reads.

September 2003 Version 0.9

|]
I ntel Draft for Review Code Definitions

EFI_FIRMWARE_VOLUME_PROTOCOL. ReadSection()

Summary

Locates the requested section within a file and returns it in a buffer.

Prototype

EFI_STATUS
(EFIAPI * EFI_FV_READ SECTION) (
IN EFI FIRMWARE VOLUME PROTOCOL *This,

IN EFI GUID *NameGuid,
IN EFI SECTION TYPE SectionType,
IN UINTN SectionInstance,
IN OUT VOID **Buffer,
IN OUT UINTN *BufferSize,
OUT UINT32 *AuthenticationStatus
)i
Parameters
This

Indicates the EFI FIRMWARE VOLUME PROTOCOL instance.

NameGuid

Pointer to an EFI_ GUID, which indicates the file name from which the requested
section will be read. Type EFI_GUID is defined in
InstallProtocolInterface () inthe EFI 1.10 Specification.

SectionType

Indicates the section type to return. SectionType in conjunction with
SectionInstance indicates which section to return. Type
EFI SECTION TYPE is defined in EFI COMMON SECTION HEADER.

SectionInstance

Indicates which instance of sections with a type of Sect ionType to return.
SectionType in conjunction with SectionInstance indicates which section
to return. SectionInstance is zero based.

Buffer

Pointer to a pointer to a buffer in which the file or section contents are returned, not
including the section header. See “Description” below for more details on the usage
of the Buf fer parameter.

Version 0.9 September 2003 35

-
Firmware Volume Specification Draft for Review Intel

36

BufferSize

Pointer to a caller-allocated UINTN. It indicates the size of the memory represented
by *Buffer. See “Description” below for more details on the usage of the
BufferSize parameter.

AuthenticationStatus

Pointer to a caller-allocated UINT32 in which the authentication status is returned.
See EFI SECTION EXTRACTION PROCOCOL.GetSection () for more
information.

Description

ReadSection () is used to retrieve a specific section from a file within a firmware volume. The
section returned is determined using a depth-first, left-to-right search algorithm through all sections
found in the specified file. See Code Definitions: Framework Firmware Image Format for more
details about sections.

The output buffer is specified by a double indirection of the Buf fer parameter. The input value
of *Buffer is used to determine if the output buffer is caller allocated or is dynamically allocated
by ReadSection().

If the input value of *Buffer!=NULL, it indicates that the output buffer is caller allocated. In
this case, the input value of *BufferSize indicates the size of the caller-allocated output buffer.
If the output buffer is not large enough to contain the entire requested output, it is filled up to the
point that the output buffer is exhausted and EFI_WARN BUFFER TOO SMALL is returned, and
then *BufferSize is returned with the size that is required to successfully complete the read.
All other output parameters are returned with valid values.

If the input value of *Buf fer==NULL, it indicates the output buffer is to be allocated by
ReadSection (). In this case, ReadSection () will allocate an appropriately sized buffer
from boot services pool memory, which will be returned in *Buffer. The size of the new buffer
is returned in *BuffersSize and all other output parameters are returned with valid values.

ReadSection () is callable only from EFI_TPL NOTIFY and below. Behavior of
ReadSection () atany EFI_TPL above EFI_TPL NOTIFY is undefined. Type EFI_TPL is
defined in RaiseTPL () inthe EFI 1.10 Specification.

September 2003 Version 0.9

|]
I ntel Draft for Review Code Definitions

Status Codes Returned

EFI_SUCCESS The call completed successfully.
EFI_WARN_BUFFER_ The caller-allocated buffer is too small to contain the requested
TOO_SMALL output. The buffer is filled and the output is truncated.
EFI_OUT_OF_RESOURCES An allocation failure occurred.
EFI_NOT_FOUND The requested file was not found in the firmware volume.
EFI_NOT_FOUND The requested section was not found in the specified file.
EFI_DEVICE_ERROR A hardware error occurred when attempting to access the
firmware volume.
EFI_ACCESS_DENIED The firmware volume is configured to disallow reads.
EFI_PROTOCOL_ERROR The requested section was not found, but the file could not be fully
parsed because a required
GUIDED SECTION EXTRACTION PROTOCOL was not
found. Itis possible the requested section exists within the file
and could be successfully extracted once the required
GUIDED SECTION EXTRACTION PROTOCOL s
published.

Version 0.9 September 2003 37

-
Firmware Volume Specification Draft for Review Intel

EFI_FIRMWARE_VOLUME_PROTOCOL.WriteFile()

Summary

Writes one or more files to the firmware volume.

Prototype

EFI STATUS
(EFIAPI * EFI_FV WRITE FILE) (
IN EFI FIRMWARE VOLUME PROTOCOL *This,

IN UINT32 NumberOfFiles,
IN EFI FV WRITE POLICY WritePolicy,
IN EFI FV WRITE FILE DATA *FileData
)i

Parameters
This

Indicates the EFI FIRMWARE VOLUME PROTOCOL instance.

NumberOfFiles
Indicates the number of elements in the array pointed to by FileData.
WritePolicy

Indicates the level of reliability for the write in the event of a power failure or other
system failure during the write operation. Type EFI _FV WRITE POLICY is
defined in “Related Definitions” below.

FileData

Pointer to an array of EFI FV WRITE FILE DATA. Each element of
FileData [] represents a file to be written. Type EFI_FV_WRITE FILE DATA
is defined in “Related Definitions” below.

Description

WriteFile () is used to write one or more files to a firmware volume. Each file to be written is
described by an EFI FV WRITE FILE DATA structure.

The caller must ensure that any required alignment for all files listed in the FiIeData array is
compatible with the firmware volume. Firmware volume capabilities can be determined using the
GetVolumeAttributes () call

Similarly, if the WritePolicyissetto EFI FV RELIABLE WRITE, the caller must check the
firmware volume capabilities to ensure EFI_FV RELIABLE WRITE is supported by the
firmware volume. EFI FV UNRELIABLE WRITE must always be supported.

Writing a file with a size of zero (FileData [n] .BufferSize == 0) deletes the file from the
firmware volume if it exists. Deleting a file must be done one at a time. Deleting a file as part of a
multiple file write is not allowed.

38 September 2003 Version 0.9

|]
I ntel Draft for Review Code Definitions

WriteFile () is callable only from EFI_TPL NOTIFY and below. Behavior of
WriteFile() atany EFI_TPL above EFI_TPL NOTIFY is undefined. Type EFI_TPL is
defined in RaiseTPL () in the EFI 1.10 Specification.

Related Definitions

//**

// EFI_FV_WRITE POLICY
//**

typedef UINT32 EFI FV WRITE POLICY

#define EFI_FV UNRELIABLE WRITE 0x00000000
#define EFI_FV_RELIABLE WRITE 0x00000001

All other values of EFI_FV_WRITE POLICY are reserved. Following is a description of the
fields in the above definition.

EFI_FV_UNRELIABLE_WRITE | This value in the WritePolicy parameter indicates that
there is no required reliability if a power failure or other system
failure occurs during a write operation. Updates may leave a
combination of old and new files. Data loss, including complete
loss of all files involved, is also permissible. In essence, no
guarantees are made regarding what files will be present
following a system failure during a write witha WritePolicy
of EFI FV UNRELIABLE WRITE. The advantage of this
mode is that it can be implemented to use much less space in
the storage media. Space-constrained firmware volumes may
be able to support writes where it would be otherwise impossible.
EFI_FV_RELIABLE_WRITE This value in the WritePol1icy parameter indicates that, on
the next initialization of the firmware volume following a power
failure or other system failure during a write, all files listed in the
FileData array are completely written and are valid, or none
is written and the state of the firmware volume is the same as it
was before the write operation was attempted.

Version 0.9 September 2003 39

-
Firmware Volume Specification Draft for Review Intel

//**

// EFI_FV _WRITE FILE DATA
//**

typedef struct {

EFI _GUID *NameGuid,

EFI FV FILETYPE Type,

EFI FV FILE ATTRIBUTES FileAttributes
VOID *Buffer,
UINT32 BufferSize

} EFI_FV WRITE FILE DATA;

NameGuid

Pointer to a GUID, which is the file name to be written. Type EFI_GUID is defined
in InstallProtocolInterface () inthe EFI .10 Specification.

Type
Indicates the type of file to be written. Type EFI FV FILETYPE is defined in
Code Definitions: File Types.
FileAttributes
Indicates the attributes for the file to be written. Type
EFI FV FILE ATTRIBUTES is defined in ReadFile ().
Buffer
Pointer to a buffer containing the file to be written.
BufferSize

Indicates the size of the file image contained in Buffer.

40 September 2003 Version 0.9

|]
I ntel Draft for Review Code Definitions

Status Codes Returned
EFI_SUCCESS The write completed successfully.

EFI_OUT_OF_RESOURCES The firmware volume does not have enough free space to
store file(s).

EFI_DEVICE_ERROR A hardware error occurred when attempting to access the
firmware volume.

EFI_WRITE_PROTECTED The firmware volume is configured to disallow writes.

EFI_NOT_FOUND A delete was requested, but the requested file was not found in

the firmware volume.

EFI_INVALID_PARAMETER A delete was requested with a multiple file write.
EFI_INVALID_PARAMETER An unsupported WritePolicy was requested.
EFI_INVALID_PARAMETER An unknown file type was specified.
EFI_INVALID_PARAMETER A file system specific error has occurred.

Other than EFI_DEVICE ERROR, all error codes imply the firmware volume has not been
modified. In the case of EFI_DEVICE ERROR, the firmware volume may have been corrupted
and appropriate repair steps must be taken.

Version 0.9 September 2003 41

Firmware Volume Specification

Draft for Review

EFI_FIRMWARE_VOLUME_PROTOCOL.GetNextFile()

42

Summary

Prototype

EFI STATUS
(EFIAPI * EFI_FV GET NEXT FILE) (

IN EFI FIRMWARE VOLUME PROTOCOL
IN OUT VOID

IN OUT EFI FV FILETYPE

OUT EFI_GUID

OUT EFI FV FILE ATTRIBUTES

OUT UINTN

) ;

Parameters

This

Retrieves information about the next file in the firmware volume store that matches the
search criteria.

*This,

*Key,
*FileType,
*NameGuid,
*Attributes,
*Size

Indicates the EFI FIRMWARE VOLUME PROTOCOL instance.

Key
Pointer to a caller-allocated buffer that contains implementation-specific data that is
used to track where to begin the search for the next file. The size of the buffer must
be at least This->KeySize bytes long. To reinitialize the search and begin from
the beginning of the firmware volume, the entire buffer must be cleared to zero.
Other than clearing the buffer to initiate a new search, the caller must not modify the
data in the buffer between calls to GetNextFile ().

FileType
Pointer to a caller-allocated EFI _FV FILETYPE. The GetNextFile () APIcan
filter its search for files based on the value of the *FileType input. A
*FileType input of EFI FV FILETYPE ALL causes GetNextFile () to
search for files of all types. If a file is found, the file’s type is returned in
*FileType. *FileType is not modified if no file is found. See Code
Definitions: File Types for EFI_FV FILETYPE related definitions.

NameGuid

Pointer to a caller-allocated EFI_GUID. If a matching file is found, the file’s name
is returned in*NameGuid. If no matching file is found, *NameGuid is not
modified. Type EFI_GUID is defined in InstallProtocolInterface () in

the EFI 1.10 Specification.

September 2003

Version 0.9

|]
I ntel Draft for Review Code Definitions

Attributes

Pointer to a caller-allocated EFI FV FILE ATTRIBUTES. If a matching file is
found, the file’s attributes are returned in *Attributes. If no matching file is
found, *Attributes is not modified. Type EFI_FV_FILE ATTRIBUTES is
defined in ReadFile().

Size
Pointer to a caller-allocated UINTN. If a matching file is found, the file’s size is
returned in *Size. If no matching file is found, *Size is not modified.

Description

GetNextFile () is the interface that is used to search a firmware volume for a particular file. It
is called successively until the desired file is located or the function returns EFI_NOT FOUND.

To filter uninteresting files from the output, the type of file to search for may be specified in
*FileType. For example, if *FileTypeis EFI FV FILETYPE DRIVER, only files of this
type will be returned in th