

UEFI
Self-Certification Test (SCT)
Version 2.1 User Guide

Release Version 2.1
May, 2009

UEFI SCT User Guide

ii

The material contained herein is not a license, either expressly or impliedly, to any intellectual property owned
or controlled by any of the authors or developers of this material or to any contribution thereto. The material
contained herein is provided on an "AS IS" basis and, to the maximum extent permitted by applicable law, this
information is provided AS IS AND WITH ALL FAULTS, and the authors and developers of this material hereby
disclaim all other warranties and conditions, either express, implied or statutory, including, but not limited to,
any (if any) implied warranties, duties or conditions of merchantability, of fitness for a particular purpose, of
accuracy or completeness of responses, of results, of workmanlike effort, of lack of viruses and of lack of
negligence, all with regard to this material and any contribution thereto. Designers must not rely on the
absence or characteristics of any features or instructions marked "reserved" or "undefined." The Unified EFI
Forum, Inc. reserves any features or instructions so marked for future definition and shall have no responsibility
whatsoever for conflicts or incompatibilities arising from future changes to them. ALSO, THERE IS NO
WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET POSSESSION, CORRESPONDENCE TO
DESCRIPTION OR NON-INFRINGEMENT WITH REGARD TO THE SPECIFICATION AND ANY CONTRIBUTION
THERETO. IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR ANY CONTRIBUTION
THERETO BE LIABLE TO ANY OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE GOODS OR SERVICES,
LOST PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR
SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY WAY
OUT OF THIS OR ANY OTHER AGREEMENT RELATING TO THIS DOCUMENT, WHETHER OR NOT SUCH PARTY
HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright 2007, 2008, 2009 Unified EFI, Inc. All Rights Reserved

UEFI SCT User Guide

 Revision History
Revision Revision History Date

2.1 Initial Release; release version number matches UEFI Specificaton
number.

5/12/09

iii

UEFI SCT User Guide

Contents
1 Introduction... 1

1
1
2

4
4
6
8
9

10
11
11
11
12
12
12
13
15
15

17

17
24
24
25
27
27
28
31
33
33
34

4 UEFI SCT For IHV ... 37
37
37
38
40
40
40

47

47
47

1.1 Overview ..
1.2 System Requirements...
1.3 Installation..

2 Usage Model – Native Mode ...3
2.1 Using the Command Line Interface ...3
2.2 Using the Menu-Driven Interface ..

2.2.1 Main Menu ...
2.2.2 Managing Test Cases ...
2.2.3 Configuring the Test Environment..
2.2.4 Generating a Test Report ...
2.2.5 Loading and Saving a Test Sequence ...

2.3 Sample Usage Models ...
2.3.1 Executing from the Command Line Interface
2.3.2 Executing from the Menu-Driven Interface..................................

2.4 Frequently Asked Questions...
2.4.1 Stopping Automatic Test Execution When the System Restarts
2.4.2 Stopping SCT Execution While Tests Are Running
2.4.3 Removing a Test Case that Always Causes the System to Hang
2.4.4 When There Are No Test Results after Test Execution
2.4.5 When Test Assertion Totals Are Different on Different Platforms.....

3 Usage Model – Passive Mode ..
3.1 Configuring UEFI SCT Agent ..
3.2 Configuring EMS ..

3.2.1 Configuring the EMS Interface...
3.2.2 Configuring Base Information ...
3.2.3 RemoteExecution & RemoteValidation ..
3.2.4 Reflushing the Case Tree..
3.2.5 Running Test Cases...
3.2.6 Loading and Saving a Sequence File ..
3.2.7 Generating Log Files..
3.2.8 Using the Tools Menu ..
3.2.9 Using the Help Menu ...

4.1 IHV SCT Building and Installation ...
4.1.1 Building the IHV SCT ...
4.1.2 Installing the IHV SCT ...

4.2 The Usage of IHV SCT ..
4.2.1 Using the Command Line Interface ..
4.2.2 Using the Menu-Driven Interface ...

5 UEFI SCRT...
5.1 Introduction ..
5.2 The Usage of SCRT...

iv

5.2.1 System Requirement ... 47
47
47
48
49
50
51
51
52

53

55

57

4
5
6
7
8
9

10
11
12
13
14
14
15
18
18
20
21
22
23
24
25
25
26
28
29
30
32
33
34
35
48
54

5.2.2 The location of SCRT Utility ..
5.2.3 Run SCRT Utility ...
5.2.4 Configuration File..
5.2.5 Analyze SCRT Test Result...
5.2.6 System Hang..

5.3 How to Add SCRT Test Cases ...
5.3.1 The Framework of SCRT Utility..
5.3.2 Example: Adding a Test Case..

Appendix A Test Report Format ..
Appendix B Test Category..
Appendix C SCRT Assertion Information...

Figures

Figure 1. SCT without Parameters Screen Display..
Figure 2. Main Menu Screen. ..
Figure 3. Test Case Management Screen. ...
Figure 4. Run Time Services Screen. ...
Figure 5. Test Environment Configuration...
Figure 6. Generating a Test Report..
Figure 7. Press the <F5> Key to Load a Test Sequence.
Figure 8. Press the <F6> Key to Save a Test Sequence..
Figure 9. Press any Key within 10 Seconds to Stop the Auto Run.
Figure 10. System Reset Records Message: “System Hangs or Stops Abnormally”....
Figure 11. Press any Key to Stop Auto Run...
Figure 12. Select [No] to Discontinue Execution. ...
Figure 13. Press <SPACE> to Deselect the Test. ...
Figure 14. Select Boot Manager. ...
Figure 15. Select Internal EFI Shell. ..
Figure 16. Load Network Drivers in Internal EFI Shell...
Figure 17. Auto Load Network Drivers by modifying startup.nsh script....................
Figure 18.Choose the NIC. ...
Figure 19. Using SCT Passive mode...
Figure 20. All the SCT commands..
Figure 21. EMS Interface Configuration window...
Figure 22. EMS Preference window. ...
Figure 23. EMS Preference window. ...
Figure 24. The Menu of Reflush Case Tree. ...
Figure 25. EMS OS application window running the Remote Validation test cases.
Figure 26. EMS OS application window-Case Tree Sub-frame.
Figure 27. Sequence File Saving Window..
Figure 28. Sequence File Loading Window. ...
Figure 29. Editing File Window..
Figure 30. ENTS Case Writer’s Guide Window..
Figure 33 Run SCRT Utility with configure file ...
Figure 34. Excel® File Containing Test Report in CSV Format.

 v

UEFI SCT User Guide

vi

Tables

Table 1. SCT Parameters ...3
Table 2. Major Items in the Main Menu of the SCT ... 5

8
29
31
34
35
40
41
43
58

Table 3. User-Configurable Items for Setting Up the Test Environment
Table 4. Sub-Frame in the EMS OS application window...
Table 5. Each Element in the Case Tree Sub-frame..
Table 6. Submenus of the Tools Menu..
Table 7. Submenus of the Help Menu...
Table 8. SCT Parameters ...
Table 9. Major Items in the Main Menu of the SCT ...
Table 10. The Items in the Menu of the Test Device Configuration
Table 11 Test Case, Port 80 display and Log file Relationship for Each assertion.......

1
Introduction

1.1 Overview

The UEFI Self-Certification Tests (SCT) is a toolset for platform firmware developers to
validate UEFI implementations on IA-32, X64, and Itanium Architecture-based
platforms for compliance to the UEFI 2.1 Specification. The toolset features a Test
Harness for executing built-in EFI Compliance Tests, as well as for integrating user-
defined tests that were developed using the UEFI SCT open source code.

The UEFI SCT Test Harness provides two different usage models as native mode and
passive mode. Please note that most network-related protocols (except SNP & PXEBC)
can be tested only in passive mode. In passive mode UEFI SCT, the network-related
protocol testing is included.

This document also provides descriptions of the IHV SCT. The IHV SCT is designed to
aid the testing of UEFI drivers that follow the UEFI Driver Model described in the UEFI
2.1 Specification. There are several different classes of UEFI drivers, each with many
variations. Also, this document provides guidelines on testing for Independent
Hardware Vendors (IHV) for UEFI 2.1 Specification Complacency.

1.2 System Requirements

The UEFI SCT must be executed on a target system that meets the following
requirements:

• The target system must have an Itanium Architecture-based platform, an X64
platform, or an IA-32 platform.

• The target system firmware must have EFI implemented per the UEFI 2.1
Specification.

• The EFI implementation on the target system must include an EFI Shell.

• The target system must have at least 100MB of disk space in the EFI file
system to contain the SCT test and log files.

The UEFI SCT must have another host machine for passive mode usage. This machine
must the following requirements:

• Installing Microsoft Windows 2000® or Microsoft Windows XP® operating
system

• The target machine and host machine must be connected by network devices
such as a switch/hub, etc.

Refer to the latest UEFI SCT Release Notes for other possible system requirements.

1

Introduction

2

1.3 Installation

A typical installation of the UEFI SCT involves the following:

• Ensuring that the target system is configured to boot to the EFI Shell upon
power-on/reset without user intervention.

Setting the boot options is usually done using EFI Boot Manager during the target
system’s EFI implementation.

• Copying the UEFI SCT executable files into a default directory in the EFI file
system of the target system.

The default directory is where the target system automatically boots to after
bringing up the EFI Shell. The default directory must be on a Read/Write storage
medium.

The UEFI SCT comes in three versions: one for Itanium Architecture platforms, one for
X64 platforms and another for IA-32 platforms. In general, all three versions bundled
with each UEFI SCT release. The user must ensure that the appropriate version of the
UEFI SCT is installed on the target platform prior to use.

The above is a general description of the UEFI SCT installation process. Detailed
installation instructions are provided in the UEFI SCT Release Notes that accompany
each UEFI SCT release. The person performing the installation must make sure that
the UEFI SCT Release Notes match the UEFI SCT release being used.

2
Usage Model – Native Mode

The native mode is invoked as an EFI application from the EFI Shell. The executable
filename is SCT.efi. This executable provides a command line interface (CLI) as well
as a menu-driven interface. These are further described below.

2.1 Using the Command Line Interface

Syntax
SCT [-a | -c | -s <seq> | -u] | -p <MNP | IP4 | Serial>] [-r] [-g
<report>]

Description of SCT Parameters

Table 1 provides a description of SCT parameters.

Table 1. SCT Parameters
Options Description

-a Execute all test cases that are recognized by the UEFI SCT Test
Harness.

-c Continue execution of the test case in progress. This option is used to
continue execution of test cases that perform system resets as part
of their test routine.

-g <report> Generate test report in .CSV format. The filename of the report is
specified by report.

-r Resets the environment for a fresh execution of the tests. This option
removes results of previous test executions. Generally, it is used with
the -a or -s options.

-s <seq> Execute test cases in the sequence specified in the file seq.

-u Start the Test Harness with the menu-driven interface.

-p Passive Mode with specified communication layer

-f Force the operation execution, no confirmation from user.

Selecting SCT without parameters will produce the screen display shown in Figure 1.

3

Figure 1. SCT without Parameters Screen Display

2.2 Using the Menu-Driven Interface

Syntax
SCT -u

Description

Type SCT -u to produce the Main Menu of the menu-driven interface.

 Main Menu

The Main Menu (see Figure 2) contains user-selectable items for initiating a number of
UEFI SCT actions.

2.2.1

4

Figure 2. Main Menu Screen.

Table 2 lists and describes the major items found in the Main Menu.

Table 2. Major Items in the Main Menu of the SCT
Items Description

Test Case
Management

Selects and executes specific test cases

Test
Environment
Configuration

Sets the parameters for test execution, including the maximum run
times for each test case, enabling/disabling screen output, etc.

Test Report
Generator

Generates a test report in .CSV format. This test report can be
opened by the Microsoft® Excel* or the other compatible utilities.

F4 (Reset
Results)

Resets all test results. It is equivalent to invoking “SCT –r” in the
command line.

F5 (Load
Sequence)

Loads a test sequence file from the storage device. This function
allows user to load, edit or execute an existing test sequence file.

F6 (Save
Sequence)

Saves a user-specified test sequence into a file. This function allows
the user to save selected test cases into a file, which can then be
used for later test execution via “SCT –s <seq>” from the
command line.

 5

 Managing Test Cases

The UEFI SCT includes a set of test cases for UEFI 2.1 Specification compliance testing.
Note that in Figure 3 the list of test cases corresponds to the major elements of EFI as
described in the UEFI 2.1 Specification. Note how in Figure 4 each test case can have
lower-level test cases in a tree-like structure.

Figure 3. Test Case Management Screen.

2.2.2

6

Figure 4. Run Time Services Screen.

Appendix B describes the method to specify such a tree-like hierarchy of tests for user-
defined test cases. Refer to the UEFI SCT Test Writer’s Guide for information on
developing user-defined test cases.

In the menu-driven interface, the boxes on the left indicate the selected or unselected
status of the corresponding test category.

[X] All test cases in this test category are selected.

[x] One or more test cases in this test category are selected, but not all test cases.

[] No test case in this test category has been selected.

The middle boxes below #Iter indicate the number of iterations to be executed for the
corresponding test category.

[N] All test cases in this test category will be executed N times.

[*] The test cases in this test category have different numbers of execution
iterations.

The summary results (result) show the execution results for the corresponding test
category.

PASS All test assertions for all test cases in this test category have passed.

FAIL One or more test assertions within the test cases for this test category has
failed.

 7

test One test case in this test category was still executing.

“ ” No test case in this test category was executed.

The number of passed test assertions and the number of failed test assertions is
displayed in the lower right corner as shown in the screenshot above. Note that the
test case’s place in the order of execution is also displayed. Note also that the order of
execution of test cases is based on the user’s order of selection of test cases to
execute.

 Configuring the Test Environment

The test environment has user-configurable items for set up, as shown in the screen
display in Figure 5.

Figure 5. Test Environment Configuration.

 Table 3 describes the user-configurable items for setting up the test environment.

Table 3. User-Configurable Items for Setting Up the Test Environment

2.2.3

Items Description

Test Case Max
Run Time

Sets the maximum execution time for the specified test case. This
feature helps prevent system hangs that may occur during execution
of a particular test case from indefinitely suspending the entire SCT
execution run. Basically, a watchdog timer is set for every test case
during execution. If the timer expires, the system automatically
restarts and SCT execution automatically continues starting with the
next test case in the order of execution.

Enable Screen
Output

Enables/disables display of test log information on the screen.

8

Bios Id A string that can be used to identify the BIOS or firmware stack of
the target system under test. This information will be included in the
log files of the test execution. Generally, Bios Id is used in
conjunction with the other strings (identified in this table) for
specifying user-controlled parameters for the test execution.

Platform
Number

A number to identify the platform under test. (e.g., 865, 915). This
information is included in the log files of the test execution.
Generally, Platform Number is used in conjunction with the other
strings (identified in this table) for specifying user-controlled
parameters for the test execution.

Configuration
Number

A number to specify the configuration under test. The numbers used
to identify different configurations are entirely up to the user.
Generally, a standard configuration is set as 0, a full configuration is
set to 1, and so on. This information will be included in the log files of
the test execution. Generally, Configuration Number is used in
conjunction with the other strings (identified in this table) for
specifying user-controlled parameters for the test execution.

Scenario
String

A string to provide additional information about or further description
of the test scenario for the next test execution. This information is
included in the log files of the test execution. Generally, this is used
in conjunction with the other strings (identified in this table) for
specifying user-controlled parameters for the test execution.

 Generating a Test Report

As shown in Figure 6 below, the user specifies the file name of the test report to be
generated for the test execution. The test report file is created in the same directory
where the SCT was invoked.

Figure 6. Generating a Test Report.

2.2.4

 9

Note: The <F2> key is used to move the cursor between the list box and the edit
box.
The <TAB> key is used in the EFI Shell to pause execution of an EFI application.

 Loading and Saving a Test Sequence

To load a test sequence file, press the <F5> key (see Figure 7). To save a test
sequence file, press the <F6> key (see Figure 8). The test sequence file is created in
the same directory where the SCT was started.

Figure 7. Press the <F5> Key to Load a Test Sequence.

2.2.5

10

Figure 8. Press the <F6> Key to Save a Test Sequence.

2.3 Sample Usage Models

 Executing from the Command Line Interface 2.3.1

2.3.2

1. To select the test cases to execute, invoke SCT –r –u from the EFI Shell.

2. To save the test case selection into a test sequence file, press <F6>.

3. To start the test execution, return to the EFI Shell and invoke SCT –s <seq>.

4. When test execution completes, invoke SCT –g <report> to generate the test

report.

Note: If the same test execution is to be repeated, Steps 1 and 2 can be skipped.

 Executing from the Menu-Driven Interface

1. Invoke SCT –r –u from the EFI Shell; select the test cases to execute.

2. Press <F9> to start test execution.

3. When test execution completes, select “Test Report Generator” to generate the
test report.

 11

2.4 Frequently Asked Questions

 Stopping Automatic Test Execution When the System
Restarts

The UEFI SCT Test Harness uses a startup script to continue test execution
automatically when the system restarts. As shown in Figure 9, the startup script
prompts the user to stop the Auto Run by pressing any key. (The user is given only a
few seconds to press any key.) After canceling an Auto Run, the user can manually
restart the test execution by typing startup.nsh or sct –c.

Figure 9. Press any Key within 10 Seconds to Stop the Auto Run.

2.4.1

 Stopping SCT Execution While Tests Are Running

The user can manually reset the system to force a test execution to stop. In this case,
a message of “system hangs or stops abnormally” is recorded for the interrupted test
(see Figure 10), and the interrupted test is skipped and continued in the next restart of
test execution.

2.4.2

12

Figure 10. System Reset Records Message: “System Hangs or Stops
Abnormally”.

 Removing a Test Case that Always Causes the System to
Hang

A test case can be disabled using the menu-driven interface. This is useful when the
user needs to disable, or to re-enable, test cases after manually stopping an Auto Run
that was causing the system hang. If the test case has been executed after being
disabled, there will be no effect on the test execution or to the test results. If the
execution of the test case to be disabled is incomplete, or is waiting its turn in the
order of execution, the test case is skipped when test execution is continued.

The following are screenshots showing the steps to removing a test case:

2.4.3

1

. Press any key to stop Auto Run.

 13

Figure 11. Press any Key to Stop Auto Run.

2. Type Sct –u to bring up the Menu-driven interface. Select [No] to discontinue

execution.

Figure 12. Select [No] to Discontinue Execution.

14

3. Remove the test using Test Case Management. Press <F8> to continue
execution. Press <SPACE> to deselect the test. This effectively removes the
test from the execution run.

Figure 13. Press <SPACE> to Deselect the Test.

 When There Are No Test Results after Test Execution

Some tests may not have results in the menu-driven interface or in the test report
even after execution. There are two possible reasons for this.

2.4.4

2.4.5

1. The test is unable to execute at all. For example, the “Network Support Test”
will not execute on a platform that has no network devices.

2. The test case does not record results in conformance to the UEFI SCT Test
Development Kit. A user-defined test case can generate its own test output
independent of the UEFI SCT test output format.

 When Test Assertion Totals Are Different on Different
Platforms

The total numbers in the UEFI SCT test reports show the total number of passed test
assertions as well as failed test assertions. The number of applicable test assertions
depends on the results of checkpoints in the tests. Platforms of different configuration
or devices will cause different results for these checkpoints, and thus different sets of
applicable test assertions. For example, the Block I/O test will verify the Read-Only
capability when there is a CD in the CD-ROM drive. Another example is when the PCI

 15

test verifies resource allocation only if a PCI device requires memory-mapped IO
space.

16

3 Usage Model – Passive Mode
The UEFI SCT Agent runs in the passive mode. All the test cases can be run on the
UEFI Management Side (EMS) with the UEFI SCT Agent running in the passive mode.

Note: The following description assumes the user has built the environment on both
UEFI SCT Agent side and EMS side.

3.1 Configuring UEFI SCT Agent

This section describes the steps that are necessary to configure the UEFI SCT Agent
side. The SCT Package will be produced after building the UEFI SCT and then need to
be installed onto the target machine for test. The directory SctPackage will be created
under the IA32, the X64, or the IPF efi/uefi build directories. Refer to Section 1.3.

The following screenshots show the steps to make UEFI SCT Agent run in the passive
mode.

1. Install UEFI SCT Agent. Refer to Chapter 5 in the "UEFI SCT Getting
Started" document.

2. Switch to the EFI shell.

3. When the target machine starts, select the menu Boot Manager as shown
in Figure 14. Select Boot Manager.

4. Select the menu “Internal EFI Shell” in the Boot Manager as shown in
Figure 15. Select Internal EFI Shell.

 17

Figure 14. Select Boot Manager.

Figure 15. Select Internal EFI Shell.

18

To use SCT passive mode after installing UefiSctAgent, obtain the necessary network
drivers and modify the startup.nsh according to the machine’s configuration:

3. Put all network drivers under the "NetworkDrivers" folder of the installation
disk of SCT. In this example, we assume the folder is "NetworkDrivers". You
can choose any location you like.

4. Open startup.nsh under the installation disk of SCT.

5. Go to the line "if exist FS%i:\Sct\.passive.mode then", insert the following
lines after it:

load \NetworkDrivers\Undi.efi
load \NetworkDrivers\Snp.efi
load \NetworkDrivers\Mnp.efi
load \NetworkDrivers\Arp.efi
load \NetworkDrivers\Ip4.efi
load \NetworkDrivers\Ip4Config.efi
load \NetworkDrivers\Udp4.efi
load \NetworkDrivers\Dhcp4.efi
load \NetworkDrivers\Mtftp4.efi
load \NetworkDrivers\Tcp4.efi

For configurations with network drivers, follow the steps below to enter SCT passive
mode.

1. Assume all network drivers are under the "NetworkDrivers" folder of the
installation disk of SCT.

2. In the EFI shell environment, load all network drivers as shown in Figure 16
and Figure 17. (One may also write an nsh script to load the network drives.)

 19

load \NetworkDrivers\Undi.efi
load \NetworkDrivers\Snp.efi
load \NetworkDrivers\Mnp.efi
load \NetworkDrivers\Arp.efi
load \NetworkDrivers\Ip4.efi
load \NetworkDrivers\Ip4Config.efi
load \NetworkDrivers\Udp4.efi
load \NetworkDrivers\Dhcp4.efi
load \NetworkDrivers\Mtftp4.efi
load \NetworkDrivers\Tcp4.efi

Figure 16. Load Network Drivers in Internal EFI Shell.

20

Figure 17. Auto Load Network Drivers by modifying startup.nsh script.

3. Enter the SCT folder and type sct -p mnp to run the SCT passive mode and

choose the NIC as shown in Figure18 that will be used for communication
between test machine and host machine.

4. Choose the NIC as shown in Figure19 that will be used for communication
between test machine and host machine.

5. Type cd sct and sct to show all the SCT commands as shown below:

 21

Figure 18.Choose the NIC.

22

Figure 19. Using SCT Passive mode

 23

Figure 20. All the SCT commands

Note: Systems without network drivers cannot use SCT passive mode, but you can
use the compatible usage as EFI SCT. Refer to chapter 2.

When running UEFI SCT Remote Validation, it is important to keep the test topology
environment clean. For example, use one switch (hub) to connect the EFI target
machine and the management host machine, but don't connect the switch (hub) to a
public network or other LANs.

To run UEFI SCT with local execution usage, make sure the "\Sct\.passive.mode" file is
removed.

3.2 Configuring EMS

The EMS side provides a Graphic User Interface (GUI) to run all the test cases. This
section describes the steps that are necessary to configure the EMS side and all the
menu functions in the EMS OS application window.

 Configuring the EMS Interface

Run the Visual Studio .NET 2003 Command Prompt to go to the command line
environment. Use the following commands to run the EMS OS application.

3.2.1

1. cd \test\ems\bin

2. Ems Main.Tcl

24

When the EMS OS application starts, two windows open. Before the main window is
available, choose the host interface in the EMS Interface Configuration window. If there
are more than one Network Interface cards on your local host, you need to specify the
one connected to the EFI target machine. Figure 21 shows the EMS Interface
Configuration window.

Figure 21. EMS Interface Configuration window.

 Configuring Base Information

If you are starting the EMS OS application for the first time, configure the base
information. Select the menu “File->Preference…”. The “EMS Preference” window
opens. The following list describes each item in the window. The “EMS Preference”
window is shown in Figure 22.

Figure 22. EMS Preference window.

3.2.2

 25

1. ENTS Testcase Root Dir...

This item refers to the root directory of all the Remote Validation test cases.
Press the Browse button on the right to choose the root directory of the
Remote Validation test cases.

2. Communication Type

This item refers to the communication type between the EMS side and the UEFI
SCT Agent side. Currently, MNP is the only supported communication type.

3. New Target MAC

This item refers to the target host MAC address you want to configure. You can
type dh –p net in the EFI Shell to get the target host MAC address as shown

in Figure 23.

Figure 23. EMS Preference window.

4. Old Target MAC

This item refers to the current configured target host MAC address.

5. Target Platform Bits

This item refers to the target platform with which the EMS connects. You can
choose 32bits or 64bits. Choose 32bits for the IA32 platform and 64bits for
others.

26

After configuring, click “OK” to confirm the configurations, or click “Cancel” to abort.
Clicking “OK” saves the configurations as the default settings.

 RemoteExecution & RemoteValidation

There are two methods to validate the EFI-based machine in UEFI SCT passive mode.
One is Remote Execution, and the other is Remote Validation.

3.2.3

3.2.4

• All Remote Execution test case files are located on the UEFI SCT Agent side.
All cases are executed on the EFI side. The EMS performs case

management tasks.

• All Remote Validation test case files are in Tcl scripts stored on the EMS side.
All Remote Validation test cases use Remote Procedure Call (RPC) to

perform the validation.

When the user selects the menu Windows-> RemoteExecution, the EMS side will
download the CaseTree information file from the target host and generate the remote
case tree by parsing the file.

When the user selects the menu Windows-> RemoteValidation, the EMS side will
traverse all subdirectories under the test case root directory and generate the local
case tree.

 Reflushing the Case Tree

The case tree can change after the EMS application starts. So you must reflush the
case tree when it changes. Select the menu Windows->Reflush Case Tree to
regenerate the case tree. Figure 24 shows the menu in the EMS OS application
window.

Note: When reflushing case tree, the case tree GUI will be re-generated so current
case selection and running result will be cleaned up on GUI.

For Remote Execution, the EMS side will download the file CaseTree.ini from the target
host again and then regenerate a remote case tree by reading the file.

For Remote Validation, the EMS side will traverse all the subdirectories of the test case
root directory again and then regenerate a local case tree. (Refer to section 3.2.2.)

 27

Figure 24. The Menu of Reflush Case Tree.

 Running Test Cases

When the EMS configuration is complete and the UEFI SCT Agent is running in the
passive mode, run the test cases. Figure 25 shows the EMS OS application window
running the Remote Validation test cases.

3.2.5

28

Figure 25. EMS OS application window running the Remote Validation test
cases.

Table 4 describes the sub-frames in the EMS OS application window.

Table 4. Sub-Frame in the EMS OS application window
Items Description

Case Tree Both the RemoteExecution and the RemoteValidation case tree will be
generated in this sub-frame. Select the menu Windows->
RemoteExecution or Windows-> RemoteValidation to switch the case
tree.

 29

Case File List Lists all the case files in the selected case tree directory.

Each case file has 3 elements:

• Case Name: Case name.

• Count: Running iteration of the corresponding test case.

• Result: The result of running the selected test case. If the
test case is not selected, it will show “Not started”. If the
test case is still running, it will show “Running”. If error
occurs, it will show “Case Error”. If the test case has been
run, it will show the record assertion number of passes,
warnings, and failures as shown in Figure 26.

Output Shows the running log for the test cases. There are two kinds of log
files: [Case Name].log and [Case Name].ekl. The log files are
generated under the directory \bin\log\[Case Directory Name].

In the Case Tree sub-frame, each case directory has 3 elements: an icon, a check box,
and a directory name text. Figure 26 shows each element and the status of each
element.

Figure 26. EMS OS application window-Case Tree Sub-frame.

30

Table 5 describes the usage and the different status meanings of each element for the
Case Tree directory.

Table 5. Each Element in the Case Tree Sub-frame
Items Description

Icon You can click the Icon of a case directory to change the current
directory.

Status meanings:

• Green Color: no case file was selected.

• Black Color: one or more case files were selected.

Check Box You can click the Check Box to select all the case files in the case
directory.

Status meanings:

• Unchecked: no case file was selected.

• Checked: one or more case files were selected.

Directory Name
Text

Status meanings

• Bold: Current case directory.

• Regular: Not current case directory.

After selecting the cases to run, select the menu Run->Start to run the test cases.
Status meanings

To stop the case when running, click the menu Run->Stop, and the test will stop after
the current running test case has finished. This is to make sure the case running
context is clean and that test cases won’t affect each other.

 Loading and Saving a Sequence File

Selected test cases can be saved as a sequence file. Sometimes it is more convenient
to run some test cases more than one time, and this function allows one selection,
rather than reselecting all the test cases again. Select all the test cases the first time,
save the selection as a sequence file, and when running those test cases again, one
can load the sequence file to select test cases automatically. The test sequence file is
created in the same directory where the SCT was invoked.

To save a sequence file, select one or more test cases, and then select the menu “File-
>Save sequence file as…” Figure 27 shows the sequence file Save As window.

3.2.6

 31

Figure 27. Sequence File Saving Window.

To load a sequence file, select the test case, then select the menu “File->Load
sequence file”. Figure 28 shows the sequence file loading window.

32

Figure 28. Sequence File Loading Window.

 Generating Log Files

For Remote Validation, the test report file is created in the “Report” subdirectory where
the EMS was invoked. Two kinds of reports are generated: one is in case-level and the
other is in assertion-level.

For Remote Execution, the test report is created remotely on the EFI target machine
and the test report file is transferred back to the report subdirectory where the EMS
was invoked.

3.2.7

3.2.8

Note: The report file is in CSV format and the report file is named by date and time.

 Using the Tools Menu

Table 6 describes each submenu function of the Tools menu.

 33

Table 6. Submenus of the Tools Menu
Items Description

Edit Opens an editing window. This is a simple text editor and it
provides highlighting display for UEFI SCT remote validation test
cases. Figure 29 shows the functions in detail.

Clear Output Clears current records in the Output sub-frame of the EMS OS
application window.

Figure 29. Editing File Window.

 Using the Help Menu

Table 7 describes each submenu function of the Help menu.

3.2.9

34

Table 7. Submenus of the Help Menu
Items Description

Index Provides a quick reference on Remote Validation Tcl commands for
case developers. Find detailed usage information about the
commands used in the Tcl script. Figure 30 shows the functions in
detail.

About ENTS… Provides the version and copyright information about EMS.

Figure 30. ENTS Case Writer’s Guide Window.

 35

36

4
UEFI SCT For IHV

4.1 IHV SCT Building and Installation

 Building the IHV SCT 4.1.1

4.1.1.1 Setup Development System

Several Microsoft tools are required to build the EDK and the UEFI SCT source tree.
The following tools must be installed on the development system.

• Microsoft Windows 2000® or Microsoft Windows XP® operating system

For 32-bit Intel architecture (IA32) platform development:

• Microsoft Visual Studio .NET® 2003 Professional (7.1)

For Intel Itanium® processor family development:

• Microsoft® C/C++ Optimizing Compiler Version 13.10.2240.8 for IA64 in the
Microsoft Windows Server® 2003 DDK (Build 3790).

When compiling for targets based on Itanium architecture, use NMAKE.EXE,
LINK.EXE and LIB.EXE from the Microsoft Windows Server 2003 DDK (Build 3790).

4.1.1.2 Download Source Code

 The first step is to download the source code from www.uefi.org. You must register
and use the log in information you receive. Everyone is welcome to join. To build the
IHV SCT, downloaded the EDK and the EFI Shell source code as well .

The IHV SCT this document referred to is compliant to UEFI Specification, so the
source code of UEFI SCT and IHV SCT are in one package. Similar to UEFI SCT,
building, an IHV SCT also needs the source code packages of SCT, EDK and EFI Shell.
The details about where and how to get these packages are described in “UEFI SCT
User Guide”.

The packages download from website are Zip files. Users should extract these
packages into different locations step by step:

• Extract the Zip file of SCT source code package to a location on your system,
for example: C:\Test.

• Extract the Zip file of EDK to the SCT directory, for example, extract to
C:\Test\UefiSct.

37

• Extract the Zip file of EFI Shell to the EDK\Other\Maintained\Application
directory, for example,
C:\Test\UefiSct\Edk\Other\Maintained\Application.

4.1.1.3 Build Configuration Files

There is only one configuration file primarily used to describe the local system for
building the various build tips, its name is PlatformTools.env. Using this file, users can
define or modify some environmental variables for building.

4.1.1.4 IA32 Build Tip

Run Visual Studio .NET 2003 Command Prompt to go to the command line
environment. The following commands can be used to build the UEFI SCT IA32 tip. If
the build is successful, an install package SctPackage will be created in the
Platform\IntelTest\UEFI\IA32\ihv directory.

1. cd \test\efisct\platform\inteltest\UEFI\ia32\

2. set efi_source=c:\test\efisct

3. nmake ihv

4.1.1.5 X64 Build Tip

To build the UEFI SCT X64 tip, you just need to change the directory from IA32 to X64.
an install package SctPackage will be created in the Platform\IntelTest\UEFI\X64\ihv
directory.

1. cd \test\efisct\platform\inteltest\UEFI\x64\

2. set efi_source=c:\test\efisct

3. nmake ihv

4.1.1.6 IPF Build Tip

To build the UEFI SCT IPF tip, you just need to change the directory from IA32 to IPF.
an install package SctPackage will be created in the Platform\IntelTest\UEFI\IPF\ihv
directory.

1. cd \test\efisct\platform\inteltest\UEFI\ipf\

2. set efi_source=c:\test\efisct

3. nmake ihv

 Installing the IHV SCT

The IHV SCT agent is a shell application, so the EFI Shell environment is a must to run
IHV SCT agent. in case you don’t have built-in shell for UEFI 2.1 sample code or a
Tiano implementation, setup the shell environment by following the steps given below:

4.1.2

1. Copy the shell.efi to the target machine.

38

2. Add a boot option to the shell.efi just added.

3. Boot to the specified shell environment, and do the following installation steps,
according to different target platforms.

The UEFI SCT Agent can be installed on the following platforms:

• IA32 Platform

• Itanium-Based Platform

• EM64T-Based Platform

4.1.2.1 Installing the IHV SCT Agent on an IA32 Platform

1. Copy the contents of the IA32 build directory SctPackage to a USB device or
IDE-CD.

2. Put the USB or IDE-CD into the USB port or the IDE-CD drive and boot the
system to the EFI Shell environment.

3. In EFI Shell environment, change the current drive and directory to the
installation CD or USB device drive and root directory.

4. Run installIA32.efi and follow the instructions on the screen.

4.1.2.2 Installing the IHV SCT Agent on an Itanium-Based Platform

1. Copy the contents of the x64 build directory SctPackage to a USB device or
IDE-CD.

2. Put the USB or IDE-CD into the USB port or the IDE-CD drive and boot the
system to the EFI Shell environment.

3. In EFI Shell environment, change the current drive and directory to the
installation CD or USB device drive and root directory.

4. Run install64.efi and follow the instructions on the screen.

4.1.2.3 Installing the IHV SCT Agent on an EM64T-Based Platform

1. Copy the contents of the IPF build directory SctPackage to a USB device or
IDE-CD.

2. Put the USB or IDE-CD into the USB port or the IDE-CD drive and boot the
system to the EFI Shell environment.

3. In EFI Shell environment, change the current drive and directory to the
installation CD or USB device drive and root directory.

4. Run installX64.efi and follow the instructions on the screen.

 39

4.2 The Usage of IHV SCT

 Using the Command Line Interface

The command line interface of the IHV SCT agent is similar to the UEFI SCT’s (see the
“UEFI SCT User Guide”), but the IHV SCT does not support the passive mode. The
syntax of the IHV SCT’s command line is:
SCT [-a | -c | -s <seq> | -u][-r] [-g <report>]

Table 8 provides a description of SCT parameters.

Table 8. SCT Parameters

4.2.1

Options Description

-a Execute all test cases that are recognized by the IHV SCT Test
Harness.

-c Continue execution of the test case in progress. This option is used to
continue execution of test cases that perform system resets as part
of their test routine.

-g <report> Generate test report in .CSV format. The filename of the report is
specified by report.

-r Resets the environment for a fresh execution of the tests. This option
removes results of previous test executions. Generally, it is used with
the -a or -s options.

-s <seq> Execute test cases in the sequence specified in the file seq.

-u Start the Test Harness with the menu-driven interface.

 Using the Menu-Driven Interface 4.2.2

Syntax
SCT -u

Description

Type SCT -u to produce the Main Menu of the menu-driven interface.

4.2.2.1 Main Menu

The Main Menu (see Figure 31) contains user selectable items for initiating a number of
IHV SCT actions.

40

Figure 31Main Menu of IHV SCT

Table 9 lists and describes the major items found in the Main Menu.

Table 9. Major Items in the Main Menu of the SCT
Items Description

Test Case
Management

Selects and executes specific test cases

Test
Environment
Configuration

Sets the parameters for test execution, including the maximum run
times for each test case, enabling/disabling screen output, etc.

Test Device
Configuration

Selects the devices that should be tested.

Test Report
Generator

Generates a test report in .CSV format. This test report can be
opened by the Microsoft® Excel* or the other compatible utilities.

F4 (Reset
Results)

Resets all test results. It is equivalent to invoking “SCT –r” in the
command line.

F5 (Load
Sequence)

Loads a test sequence file from the storage device. This function
allows user to load, edit or execute an existing test sequence file.

 41

F6 (Save
Sequence)

Saves a user-specified test sequence into a file. This function allows
the user to save selected test cases into a file that can then be used
for later test execution via “SCT –s <seq>” from the command line.

4.2.2.2 Managing Test Cases

The UEFI compliance IHV SCT includes a set of test cases for UEFI 2.1 Specification
compliance testing. The method to manage the test cases and to specify test cases in
the tree-like hierarchy is described in “UEFI SCT User Guide”.

In IHV SCT, only selecting the test cases in the tree-like menu is not enough to test.
Selecting cases in tree-like menu just tells IHV SCT which cases should be run, in IHV
SCT, users must choose which devices they want to test through “Test Device
Configuration”(see section 4.2.2.3).

4.2.2.3 Test Device Configuration

The IHV SCT provides the utility of Test Device Configuration. This allows users to
choose the devices for testing. The IHV SCT uses a configuration file to save a list of
devices that users have chosen. During IHV SCT testing, it will only test the supported
devices listed in the configuration file instead of all the supported devices in the
system. In other words if the users only select the test cases through the tree-like
menu but do not choose any device though the “Test Device configuration”, no
checkpoints in the cases will be tested.

In the IHV SCT, selecting cases in tree-like menu tells IHV SCT which cases should be
run; and choosing devices through the “Test Device Configuration” tells the IHV SCT
which devices should be test. The usage of Test Device Configuration is shown in
Figure 32:

42

Figure 32 Test Device Configuration

Table 10. The Items in the Menu of the Test Device Configuration
Items Description

H Print the help information

I <Handle> Insert one device into the configuration file

L List all devices in the configuration file

R <Index> Remove one device from the configuration file

S <Type> Scan devices in the system
(Type 0: All, Type 1: With Option ROM)

V <Index> List one device in the configuration file in verbose mode

In the IHV SCT, the usual way to test an add-in card as follows: The first thing users
should do is let the SCT scan devices in the system by typing the command line “S 0”
or “S 1” in the Test Device Configuration’s window. “S 0” means scan all devices, “S 1”
means scan devices with option ROM. See table 10.

 43

After SCT scan, the “Handle” of the device sought can be known, so users can insert
the device sought into SCT’s configuration file by typing the command line ”I
<Handle>”;

44

 45

At this time, users can select test cases in the tree-like menu. The SCT can
run the test only if all the operations of test device configuration are done.

Note: If users want to start a new test because the test device configuration has
been changed, the “SCT -r” operation is suggested.

46

5
UEFI SCRT

5.1 Introduction

This chapter introduces the Self-Certification Runtime Test (SCRT) Utility and focuses
on how to use it.

As a supplement to SCT, SCRT is invoked under the EFI shell environment and used to
validate UEFI Runtime Services implementations for compliance to the UEFI 2.1
Specification. The source code of SCRT has been included in UEFI SCT release package
and the binary of SCRT utility is generated automatically in the build process of UEFI
SCT. Please refer to the instructions in the document UEFI SCT Getting Started. This
document is included in the UEFI SCT release package to build the UEFI SCT Agent.

5.2 The Usage of SCRT

 System Requirement

To ensure SCRT runs in the runtime environment without unexpected behavior, for
targeted platforms the physical memory on the target machine is limited to the
following rules:

5.2.1

5.2.2

5.2.3

• IA32 architecture-based platform: Physical memory <= 4G.

• EM64T architecture-based platform: Physical memory <= 32G.

• IPF architecture-based platform: Physical memory <= 4096T

 The location of SCRT Utility

After UEFI SCT is built successfully, SCRT Utility is generated automatically and located
at specified path below, including SCRTDRIVER.efi, SCRTAPP.efi, SCRT.conf.
UefiSct\Platform\IntelTest\UEFI\IA32\uefi21\SctPackage\IA32\SCRT IA32
Version
UefiSct\Platform\IntelTest\UEFI\X64\uefi21\SctPackage\X64\SCRT X64
Version
UefiSct\Platform\IntelTest\UEFI\IPF\uefi21\SctPackage\IPF\SCRT IPF
Version

 Run SCRT Utility

SCRT is invoked under the EFI shell environment:

1. Copy SCRT Utility into discretionary directory in EFI shell environment.

 47

2. Change execution path to the directory that SCRT Utility is located.

3. type ‘Load SCRTDRIVER.efi’

4. type ‘SCRTAPP –f SCRT.conf’

Figure 33 Run SCRT Utility with configure file

 Configuration File

Following is an example for the usage model of the configuration file named SCRT.conf.
SCRT check points are divided into five groups, Variable Service, Time Service, Capsule
Service, MonotonicCount Service, and Reset Service.

In SCRT.conf, FALSE means to disable a runtime service test, and TRUE means to
enable a runtime service test.

With the help of this configuration file, SCRT obtains information regarding which
runtime services are needed to test in the runtime environment.

5.2.4

48

UEFI 2.1 Runtime Test Utility SCRT Configuration file.

[variable]
SetVariable = TRUE
GetVariable = TRUE
GetNextVariableName = TRUE
QueryVariableInfo = FALSE

[time]
GetTime = TRUE
SetTime = TRUE
SetWakeupTime = TRUE
GetWakeupTime = TRUE

[capsule]
QueryCapsuleCapabilities = FALSE
UpdateCapsule = FALSE

[monotonicCount]
GetNextHighMonotonicCount = TRUE

[reset]
ColdReset = TRUE
WarmReset = FALSE
ShutDown = FALSE

Note: For three reset sub-items, only one item is allowed at a time.

 Analyze SCRT Test Result

Unlike SCT, SCRT cannot create a test log file automatically in a runtime environment
because it lacks certain boot services. To solve this issue, SCRT records the results in a
variable. After runtime test, user can run “SCRTAPP.efi –g SCRT.log” in shell
environment to analyze the variable and generate a log file which is named as
‘SCRT.log’. It lists all requested test points and separate test results. From these
messages, users can easily find which test point fails.

Besides this method, SCRT can send debug messages to Port 80 at the execution time.
Using these messages, the user can analyze the failure reason.

5.2.5

5.2.5.1 Log File Overview

SCRT log file is divided into several groups:

Variable Services Test
Time Services Test
Capsule Service Test
Misc Services Test
Reset Services Test

The following is an example of the log file:

Note: Sometimes the result of Reset Services Test is not correct. Please note the
platform behavior to judge

 49

********************Variable Test Group*******************

SetVariable Requested
SetVariable Pass
GetVariable Requested
GetVariable Pass
GetNextVariable Requested
GetNextVariable Pass

********************Time Test Group*******************

GetTime Requested
GetTime Pass
SetTime Requested
SetTime Pass
SetWakeupTime Requested
SetWakeupTime Pass
GetWakeupTime Requested
GetWakeupTime Fail

********************Capsule Test Group*******************

********************Misc Test Group*******************

GetNextCount Requested
GetNextCount Not Test

********************Reset Test Group*******************

ColdReset Requested
ColdReset Not Test

Please note the following”

• Requested means this test point is requested to test in runtime environment.

• Pass means this test point is tested successfully in runtime environment.

• Fail means this test point is failed during runtime test, usually it causes
system hang.

• Not Test means this test point is not tested because some test point prior to it
causes system hang.

5.2.5.2 Port 80 Display

If the target machine under test has Port 80, the hex number displayed with Port80
can be used to trace the test case workflow. For every checkpoint, Port 80 will display
a unique hex number. Please refer to Appendix C for more details.

 System Hang

SCRT validates the Runtime Services implementation in the runtime environment. If
some pointers are not converted, the system hangs. If the system hangs at Nth
checkpoint, the SCRT records the (N-1)th information in the test log file and displays
the corresponding hex number in Port 80. Using this relationship with the enabled
checkpoint sequences, users can find which checkpoint hangs.

5.2.6

50

5.3 How to Add SCRT Test Cases

SCRT is used to validate Runtime Services in a runtime environment. If a more
detailed test case for runtime services is needed, users may develop the required test
case, and add it to the SCRT infrastructure.

 The Framework of SCRT Utility

SCRTDriver in the SCRT utility is responsible for performing the test cases. In
SCRTDriver module, GUID definition for the checkpoints is declared in Guid.h and
Guid.c, and test cases are located in TestCase.c.

To extend the test coverage, the user can add the test cases in TestCase.c and add
the new GUID definitions in Guid.h/Guid.c.

SCRTDriver\
 |----Guid.h
 |----Guid.c
 |----TestCase.c
 |----Debug.c
 |----Print.c
 |----SCRTDriver.c
 |----SCRTDriver.h
 |----SCRTDriver.inf

|----ia32
 |----Dump.c
 |----Io.c
 |----Io.h
 |----IoAccess.asm
 |----Port80.asm

|----ipf
 |----Dump.c
 |----Io.c
 |----Io.h
 |----Port80.c

|----x64
 |----Dump.c
 |----Io.c
 |----Io.h
 |----IoAccess.asm
 |----Port80.asm

5.3.1

Note: Guid.h/Guid.c declares GUID definition.

Note: TestCase.c consists of the test cases.

In TestCase.c, we allow for adding more checkpoints. For each new checkpoint, the
user needs to create a new GUID for it and declare it in Guid.h/Guid.c.

 51

 Example: Adding a Test Case

Because the call Runtime Service UpdateCapsule behaves differently for different
platforms—for example, a system reset—this checkpoint is not included in TestCase.c
as a common test case. Users can add a case in TestCase.c to verify the service, per
the example shown below.

Following is sample code to add the checkpoint in EfiCapsuleTestVirtual(),
TestCase.c:

Port80(xxx);

Status = VRT->UpdateCapsule (
 xxxxx,
 xxxxx,
 xxxxx
);

RecordAssertion (
 Status,
 gSCRTAssertionGuidxxx,
 "RT. UpdateCapsule – should be EFI_SUCCESS",
 "%a:%d:Status - %r, Expected - %r",
 __FILE__,
 __LINE__,
 Status,
 EFI_SUCCESS
);

In addition, define gSCRTAssertionGuidxxx in Guide.h and Guide.c as shown below:

In Guide.c:

EFI_GUID gSCRTAssertionGuidxxx = EFI_TEST_SCRT_ASSERTION_xxx_GUID;

In Guide.h:

#define EFI_TEST_SCRT_ASSERTION_xxx_GUID \
{ xxxxxxxx, xxxx, xxxx, { xx, xx, xx, xx, xx, xx, xx, xx } }

extern EFI_GUID gSCRTAssertionGuidxxx;

5.3.2

52

Appendix A
Test Report Format

A summary of SCT test results is recorded into a test report file in CSV format. The
output information includes the number of passed and failed test assertions for each
executed test category, as well as detailed information for each executed test
assertion, passed or failed.

Below are the contents of a sample test report file:

“Self Certification Test Report”
“Service/Protocol Name”,“Total”,“Failed”,“Passed”
“Boot Services Test\Event, Timer, and Task Priority Services
Test”,“16”,“0”,“16”
“Boot Services Test\Image Services Test”,“121”,“1”,“120”
“Driver Model Test\Driver Binding Protocol Test”,“15”,“1”,“14”
“Total”,“152”,“2”,“150”

“Index”,“Instance”,“Iteration”,“Guid”,“Result”,“Title”,“Runtime
Information”,“Case Revision”,“Case Guid”
“3.1.2.1”,“0”,“0”,“3D3BEE76-3BE8-40DD-BD34-
C38AFE2BBDEB”,“FAIL”,“BS.LoadImage() – Load image fail via LOAD_FILE
protocol”,“Status – Unsupported, TPL – 4”,“0x00010000”,“256456BC-D9E1-
476c-B4AD-BE37E53F7940”
“3.1.2.2”,“0”,“0”,“3D3BEE76-3BE8-40DD-BD34-
C38AFE2BBDEC”,“FAIL”,“BS.LoadImage() – Load image fail via Device and
File path”,“Status – Not found, TPL – 8”,“0x00010000”,“256456BC-D9E1-
476c-B4AD-BE37E53F7940”

“Index”,“Instance”,“Iteration”,“Guid”,“Result”,“Title”,“Runtime
Information”,“Case Revision”,“Case Guid”
“3.1.1.1”,“0”,“0”,“3D3BEE76-3BE8-40DD-BD34-
C38AFE2BBDEA”,“PASS”,“BS.CreateEvent() – Create event with invalid event
type”,“Status – Invalid parameter”,“0x00010000”,“75634025-6B30-4cc4-AC5C-
6D031AE4D74C”

When viewed in Microsoft Excel ®, the contents of the report file appear as shown in
Figure 34.

 53

Figure 34. Excel® File Containing Test Report in CSV Format.

54

Appendix B
Test Category

Information on each test category that the EFI SCT Test Harness will need for
execution is provided using a category file in INI format. This file is created in the Data
subdirectory.

Below are the contents of a sample category file:

 [Category Data]
Revision = 0x00010000
CategoryGuid = 7AB1E93F-B439-4e2e-B773-CA540CEBCFEF
InterfaceGuid = E9EF7553-F833-4e56-96E8-38AE679523CC
Name = Boot Services Test\Event, Timer, and Priority
Services Test
Description = Event, Timer, and Priority Services Test. Related to EFI
Spec 5.1.

[Category Data]
Revision = 0x00010000
CategoryGuid = CC129459-A197-4c8f-9422-2441E88C559A
InterfaceGuid = E9EF7553-F833-4e56-96E8-38AE679523CC
Name = Boot Services Test\Memory Allocation Services Test
Description = Memory Allocation Services Test. Related to EFI Spec
5.2.

The CategoryGuid is the GUID of a corresponding test file. For user-defined test cases,
the GUID is defined when using the Black-Box or White-Box test interface. The
InterfaceGuid is made up of EFI Protocol GUIDs that are currently in testing. For
example, there are three GUIDs specially defined in the EFI 1.10 Specification for the
EFI services.

Boot Services: E9EF7553-F833-4e56-96E8-38AE679523CC

Runtime Services: AFF115FB-387B-4c18-8C41-6AFC7F03BB90

Generic Services: 71652D04-BF38-434a-BCB8-6547D7FD8384

Using the category file, the list of test categories can be changed to suit your
requirements. For example, the current UEFI SCT release provides test cases for
testing protocol interfaces defined in the UEFI 2.1 Specification. You can integrate
additional test cases for these depending on the EFI implementation on the target
platform. A sample category file is shown below. The highlighting marks the places
where the file can be modified.

 55

[Category Data]
Revision = 0x00010000
CategoryGuid = 7AB1E93F-B439-4e2e-B773-CA540CEBCFEF
InterfaceGuid = E9EF7553-F833-4e56-96E8-38AE679523CC
Name = EFI Spec\Boot Services Test\Event, Timer, and
Priority Services Test
Description = Event, Timer, and Priority Services Test. Related to EFI
Spec 5.1.

[Category Data]
Revision = 0x00010000
CategoryGuid = CC129459-A197-4c8f-9422-2441E88C559A
InterfaceGuid = E9EF7553-F833-4e56-96E8-38AE679523CC
Name = EFI Spec\Boot Services Test\Memory Allocation
Services Test
Description = Memory Allocation Services Test. Related to EFI Spec
5.2.

[Category Data]
Revision = 0x00010000
CategoryGuid = {GUID of user-defined test}
InterfaceGuid = E9EF7553-F833-4e56-96E8-38AE679523CC
Name = User-defined\Boot Services Test\Event, Timer, and
Priority Services Test
Description = Event, Timer, and Priority Services Test. Related to XXX
design document.

[Category Data]
Revision = 0x00010000
CategoryGuid = {GUID of user-defined test}
InterfaceGuid = E9EF7553-F833-4e56-96E8-38AE679523CC
Name = User-defined\Boot Services Test\Memory Allocation
Services Test
Description = Memory Allocation Services Test. Related to XXX design
document.

56

Appendix C
SCRT Assertion Information

To accomplish a runtime service test, sometimes more than one step is required. For
example, to test GetVariable service, set a certain variable first, and then get it to
test. Encode the Port 80 number as XY. Here X stands for the runtime service sequence
and Y stands for the step sequence in this service test. Corresponding to a unique Port
80 hex number, a unique GUID and the test description are printed out to
COM1/COM2.The relationship is shown in Table 11.

Table 11 shows the detailed information for each assertion in the UEFI SCRT tests. It
can be used by UEFI SCRT users as a case assertion reference.

 57

Table 11 Test Case, Port 80 display and Log file Relationship for Each
assertion

Test Case Port80
Display

GUID Assertion Test Description

11 0xbff7e548,

0xf13a,

0x497c,

0x8e, 0x21,
0xae, 0xc2,
0x37, 0xa6,
0xcc, 0xe3

RT.SetVariabl
e - Set a test
variable named
UEFIRuntimeVa
riable, should
be EFI_SUCCESS

Call RT.SetVariable with
the special name and Guid.
And the variable is set with
8 Bytes data size. The
return status should be
EFI_SUCCESS.

SetVariable

12 0xf556b5ad,

0xaace,

0x4bf0,

0xb7, 0x24,
0xe1, 0x29,
0xee, 0x0,
0xea, 0x37

RT.SetVariabl
e - Clear a test
variable named
UEFIRuntimeVa
riable, should
be EFI_SUCCESS

Call RT.SetVariable to
clear the test variable. The
return status should be
EFI_SUCCESS.

21 0xd66e4a7f,

0x6d54,

0x4cc0,

0xb9, 0x3b,
0xf6, 0x2f,
0x48, 0x57,
0xa6, 0xff

RT.SetVariabl
e - Set a test
variable named
UEFIRuntimeVa
riable, should
be EFI_SUCCESS

Call RT.SetVariable with
the special name and Guid.
And the variable is set with
8 Bytes data size. The
return status should be
EFI_SUCCESS.

22 0xaa5c5763,

0x36cd,

0x4f00,

0x84, 0x36,
0xf4, 0xa9,
0xd5, 0xaf,
0x12, 0xfb

RT.GetVariabl
e - Get the test
variable named
UEFIRuntimeVa
riable, should
be EFI_SUCCESS

Call RT.GetVariable to
get the test variable. The
return status should be
EFI_SUCCESS

GetVariable

23 0xbac20972,

0x9662,

0x4f24,

0x8a, 0xac,
0x66, 0x41,
0x42, 0xb5,
0x6d, 0xde

RT.SetVariabl
e - Clear a test
variable named
UEFIRuntimeVa
riable, should
be EFI_SUCCESS

Call RT.SetVariable to
clear the test variable. The
return status should be
EFI_SUCCESS.

58

31 0x8bcda7a3,

0x2848,

0x413d,

0xbf, 0x5,
0x7, 0xe1,
0x9, 0x8d,
0x42, 0xd2

RT.SetVariabl
e - Set a test
variable named
UEFIRuntimeVa
riable, should
be EFI_SUCCESS

Call RT.SetVariable with
the special name and Guid.
And the variable is set with
8 Bytes data size. The
return status should be
EFI_SUCCESS.

32 0x67b4e72a,

0xc792,

0x4f74,

0x92, 0x1d,
0xea, 0xb3,
0x66, 0x4f,
0x95, 0x3b

RT.GetNextVar
iableName - Get
the next variable
name should be
EFI_SUCCESS/E
FI_NOT_FOUND

Loop call
RT.GetNextVariableNam
e get the next variable. The
return status should be
EFI_SUCCESS/EFI_NOT_F
OUND.

GetNextVari
ableName

33 0xdbb5195f,

0x3584,

0x427d,

0xa1, 0x68,
0x3f, 0x5e,
0x1d, 0x24,
0x3b, 0xb9

RT.SetVariabl
e - Clear a test
variable named
UEFIRuntimeVa
riable, should
be EFI_SUCCESS

Call RT.SetVariable to
clear the test variable. The
return status should be
EFI_SUCCESS.

QueryVaria
bleInfo

41 0x8e75d9a9,

0x3c14,

0x4095,

0xbe, 0x76,
0xad, 0xcf,
0x55, 0xab,
0x8e, 0x6c

RT.QueryVaria
bleInfo - Query
Variable
Information of the
platform should
be
EFI_SUCCESS.

Call

RT.QueryVariableInfo
to query variable
information. The return
status should be
EFI_SUCCESS.

GetTime 51 0xe8cd357a,

0xd254,

0x4f7b,

0x92, 0xc3,
0x23, 0xfd,
0x4d, 0xd6,
0xc0, 0xa3

RT.GetTime -
Get the current
time and date
information should
be EFI_SUCCESS

Call RT.GetTime with NULL
capabilities. The return
status should be
EFI_SUCCESS.

61 0x6417f479,

0xa174,

0x4614,

0x80, 0xcd,
0xe6, 0x96,
0x85, 0x8c,
0xd9, 0xfa

RT.GetTime -
Get the current
time and date
information should
be EFI_SUCCESS

Call RT.GetTime with NULL
capabilities. The return
status should be
EFI_SUCCESS.

SetTime

62 0xd6a3c41a,

0xe6cf,

0x42fc,

0xa0, 0x39,
0x68, 0xf8,
0x39, 0xbb,
0xbf, 0xe3

RT.SetTime –
set the same
time as just got.
should be
EFI_SUCCESS

Set time. The return status
should be EFI_SUCCESS.

 59

71 0xd6b952a9,

0x3d54,

0x4277,

0xbf, 0x60,
0xab, 0xfb,
0x3, 0x71,
0x5, 0xd5

RT.GetTime -
Get the current
time and date
information should
be EFI_SUCCESS

Call RT.GetTime with NULL
capabilities. The return
status should be
EFI_SUCCESS.

SetWakeup
Time

72 0x3f65c680,

0xae51,

0x4830,

0xb3, 0xd1,
0xd7, 0xc9,
0x2a, 0xcd,
0x14, 0x8a

RT.SetWakeupT
ime - Set wakeup
time in 1 hour
later from now on,
should be
EFI_SUCCESS

Call RT.SetWakeupTime to
set wake up time, the time
is 1 hour later from now on.
The return status should be
EFI_SUCCESS.

60

GetWakeup
Time

81 0x4611524b,

0xbfd2,

0x42d4,

0x85, 0xa8,
0x9b, 0xf,
0xd1, 0xc6,
0x27, 0xd3

RT.GetWakeupT
ime - Get the
current wakeup
alarm clock
setting
information,
should be
EFI_SUCCESS.

Call RT.GetWakeupTime to
get the current wake up
time. The return status
should be EFI_SUCCESS.

QueryCapsu
leCapabilitie
s

91 0x5c2cbd54,

0x1388,

0x4e87,

0xab, 0x11,
0x2c, 0x12,
0x3d, 0x24,
0x5, 0xbd

RT.QueryCapsu
leCapabilitie
s - Query the
capsule
capabilities with a
NULL
MaxCapsuleSiz
e, should be
EFI_INVALID_P
ARAMETER.

Call
RT.QueryCapsuleCapabi
lities to query the
capsule capabilities with a
NULL MaxCapsuleSize.
The return status should be
EFI_INVALID_PARAMETER.

UpdateCaps
ule

A1 0x9e39a3e3,

0xcbb6,

0x4fcc,

0xb2, 0x21,
0x73, 0x24,
0x79, 0xf1,
0x21, 0x77

RT.UpdateCaps
ule – Update
Capsules with 0
CapsuleCount,
should be
EFI_INVALID_P
ARAMETER.

Note: Because
this case
brings on
some reset
or update
flash
behavior, it
is
recommend
ed disable
as default.
Users can
enhance this
test case for
their own
test
platform.

Call RT.UpdateCapsule
with 0 CapsuleCount. The
return status should be
EFI_INVALID_PARAMETER.

GetNextHig
hMonotonic
Count

B1 0xda790c1e,

0xdcbf,

0x4c0e,

0xaf, 0xf7,
0x46, 0x3a,
0xc4, 0x47,
0xb0, 0x6e

RT.GetNextHig
hMonotonicCou
nt - First get next
high monotonic
counter, should be
EFI_SUCCESS.

Call
RT.GetNextHighMonoton
icCount to get next high
monotonic counter. The
return status should be
EFI_SUCCESS.

 61

62

C1 0x1bc049bb,

0xc371,
0x46cc,

0x8d, 0x98

0xef, 0x56

0xc, 0x35

0x7f, 0x1

RT.ResetSyste
m - Machine
should have code
reset! We should
never come here.

RT.ResetSystem -
Machine should have code
reset! We should never
come here.

C2 0x11a541a4,

0xf75d,

0x42e0,

0xa8, 0x97,
0xe7, 0x92,
0xd4, 0x37,
0xc2, 0xfc

RT.ResetSyste
m - Machine
should have warm
reset! We should
never come here

RT.ResetSystem -
Machine should have warm
reset! We should never
come here

ResetSyste
m

C3 0xe5818568,
0x4723,

0x473f,

0xbc, 0x8f,

0xb5, 0x86,

0x2e, 0xd2,

0x5e, 0xb1

RT.ResetSyste
m - Machine
should have shut
down! We should
never come here

RT.ResetSystem -
Machine should have shut
down! We should never
come here

	Revision History
	Figures
	Tables
	1 Introduction
	1.1 Overview
	1.2 System Requirements
	1.3 Installation

	2 Usage Model – Native Mode
	2.1 Using the Command Line Interface
	2.2 Using the Menu-Driven Interface
	2.2.1 Main Menu
	2.2.2 Managing Test Cases
	2.2.3 Configuring the Test Environment
	2.2.4 Generating a Test Report
	2.2.5 Loading and Saving a Test Sequence

	2.3 Sample Usage Models
	2.3.1 Executing from the Command Line Interface
	2.3.2 Executing from the Menu-Driven Interface

	2.4 Frequently Asked Questions
	2.4.1 Stopping Automatic Test Execution When the System Restarts
	2.4.2 Stopping SCT Execution While Tests Are Running
	2.4.3 Removing a Test Case that Always Causes the System to Hang
	2.4.4 When There Are No Test Results after Test Execution
	2.4.5 When Test Assertion Totals Are Different on Different Platforms

	3 Usage Model – Passive Mode
	3.1 Configuring UEFI SCT Agent
	3.2 Configuring EMS
	3.2.1 Configuring the EMS Interface
	3.2.2 Configuring Base Information
	3.2.3 RemoteExecution & RemoteValidation
	3.2.4 Reflushing the Case Tree
	3.2.5 Running Test Cases
	3.2.6 Loading and Saving a Sequence File
	3.2.7 Generating Log Files
	3.2.8 Using the Tools Menu
	3.2.9 Using the Help Menu

	4 UEFI SCT For IHV
	4.1 IHV SCT Building and Installation
	4.1.1 Building the IHV SCT
	4.1.1.1 Setup Development System
	4.1.1.2 Download Source Code
	4.1.1.3 Build Configuration Files
	4.1.1.4 IA32 Build Tip
	4.1.1.5 X64 Build Tip
	4.1.1.6 IPF Build Tip

	4.1.2 Installing the IHV SCT
	4.1.2.1 Installing the IHV SCT Agent on an IA32 Platform
	4.1.2.2 Installing the IHV SCT Agent on an Itanium-Based Platform
	4.1.2.3 Installing the IHV SCT Agent on an EM64T-Based Platform

	4.2 The Usage of IHV SCT
	4.2.1 Using the Command Line Interface
	4.2.2 Using the Menu-Driven Interface
	4.2.2.1 Main Menu
	4.2.2.2 Managing Test Cases
	4.2.2.3 Test Device Configuration

	5 UEFI SCRT
	5.1 Introduction
	5.2 The Usage of SCRT
	5.2.1 System Requirement
	5.2.2 The location of SCRT Utility
	5.2.3 Run SCRT Utility
	5.2.4 Configuration File
	5.2.5 Analyze SCRT Test Result
	5.2.5.1 Log File Overview
	5.2.5.2 Port 80 Display

	5.2.6 System Hang

	5.3 How to Add SCRT Test Cases
	5.3.1 The Framework of SCRT Utility
	5.3.2 Example: Adding a Test Case

	Appendix A Test Report Format
	Appendix B Test Category
	Appendix C SCRT Assertion Information

